
Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Programming for the
Intel® Xeon Phi™ Coprocessor

Dr.-Ing. Michael Klemm
Software and Services Group

Intel Corporation
(michael.klemm@intel.com)

1

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Legal Disclaimer & Optimization Notice
INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS
OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Performance tests and ratings are measured using specific computer systems and/or components
and reflect the approximate performance of Intel products as measured by those tests. Any
difference in system hardware or software design or configuration may affect actual performance.
Buyers should consult other sources of information to evaluate the performance of systems or
components they are considering purchasing. For more information on performance tests and on
the performance of Intel products, reference www.intel.com/software/products.

Copyright © 2013, Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Core, Phi,
VTune, and Cilk are trademarks of Intel Corporation in the U.S. and other countries. *Other names
and brands may be claimed as the property of others.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for
Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information
regarding the specific instruction sets covered by this notice.

Notice revision #20110804

2

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

References

• Knights Corner Quick Start Developers Guide
https://mic-
dev.intel.com/system/files/673_KNC_SDP_Quick_Start_Developers_Guide_Alpha2.pdf

• Knights Corner Instruction Set Reference Manual
http://software.intel.com/en-us/forums/showthread.php?t=105443&o=a&s=lr

• Knights Corner Software Developers Guide
https://mic-dev.intel.com/system/files/KNC%20SDG%201.03_0.pdf

• General information at mic-dev
https://mic-dev.intel.com/

3

https://mic-dev.intel.com/system/files/673_KNC_SDP_Quick_Start_Developers_Guide_Alpha2.pdf
http://software.intel.com/en-us/forums/showthread.php?t=105443&o=a&s=lr
https://mic-dev.intel.com/system/files/KNC SDG 1.03_0.pdf
https://mic-dev.intel.com/

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Agenda

• Introduction to the Intel MIC Architecture

• Programming Models

– Native Programming

– Intel MKL

– Offloading w/ explicit data transfers

– Offloading w/ implicit data transfers

– Vectorization

4

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Agenda

• Introduction to the Intel MIC Architecture

• Programming Models

– Native Programming

– Intel MKL

– Offloading w/ explicit data transfers

– Offloading w/ implicit data transfers

– Vectorization

5

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

SIMD Instructions / Vectorization

• SSE: Streaming SIMD extension

• SIMD: Single instruction, Multiple Data
(Flynn’s Taxonomy)

• E.g., SSE allows the identical treatment of 2
double, 4 floats and 4 integers at the same time

Source vector a

Destination vector

Source vector bop

=

a0a1a2a3

b0b1b2b3

a0 op b0a1 op b1a2 op b2a3 op b3

6

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Vectorization: SSE Data Types

2x double

4x float

16x byte

8x short

4x integer32

2x integer64

128 bit

7

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Evolution to Intel AVX

Lane 1 Lane 0

128 bit 128 bit

8

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Intel Xeon Phi SIMD Instructions

Lane 3 Lane 2 Lane 1 Lane 0

128 bit 128 bit128 bit 128 bit

9

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

v5 = 0 4 7 8 3 9 2 0 6 3 8 9 4 5 0 1

v6 = 9 4 8 2 0 9 4 5 5 3 4 6 9 1 3 0

vcmppi_lt k7, v5, v6

k7 = 1 0 1 0 0 0 1 1 0 0 0 0 1 0 1 0

v3 = 5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8

v1 = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

vaddpi v1{k7}, v1, v3

v1 = 6 1 8 1 1 1 8 9 1 1 1 1 6 1 8 1

512-bits

SIMD Width/Hardware Abstraction –
Vectorization/SIMD Example

10

for (i = 0; i < 15; i++)

if (v5[i] < v6[i])

v1[i] += v3[i];

Note the lack of jumps or
conditional code branches

vcmppi_lt k7, v5, v6

vaddpi v1{k7}, v1, v3

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Console
Connection

(SSH, telnet)

Virtual terminal session

Intel® MIC Architecture Overview –
Software Architecture

11

Linux* OS

Intel® MIC Architecture
support libraries, tools,

and drivers

Card OS

PCI-E Bus PCI-E Bus

Intel® MIC Architecture
communication and

application-launching
support

Intel® MIC ArchitectureLinux* Host

System-level code System-level code

User-level codeUser-level code

Offload libraries, user-
level driver, user-

accessible APIs and
libraries

User code

Host-side offload application

User code

Offload libraries,
user-accessible

APIs and
libraries

Target-side offload
application

Target-side “native”
application

User code

Standard OS
libraries plus any
3rd-party or Intel

libraries

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

12

Intel® MIC Software Architecture Block View

Symmetric, Scalable, Standards-based

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Parallelization and Vectorization are Key

• Performance increasingly depends on both threading and
vectorization

• Also true for “traditional” Xeon-based computing

Multi-threading

V
e
c
to

ri
z
a
ti
o
n

sequential,
no vectorization

multi-threaded,
no vectorization

sequential,
fully vectorized

multi-threaded,
vectorized

13

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Agenda

• Introduction to the Intel MIC Architecture

• Programming Models

– Native Programming

– Intel MKL

– Offloading w/ explicit data transfers

– Offloading w/ implicit data transfers

– Vectorization

14

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

A few General Switches

Functionality Linux

Disable optimization -O0

Optimize for speed (no code size increase), no SWP -O1

Optimize for speed (default) -O2

High-level optimizer (e.g. loop unroll), -ftz (for Itanium) -O3

Vectorization for x86, -xSSE2 is default <many options>

Aggressive optimizations (e.g. -ipo, -O3, -no-prec-div, -static -xHost for x86

Linux*)

-fast

Create symbols for debugging -g

Generate assembly files -S

Optimization report generation -opt-report

OpenMP support -openmp

Automatic parallelization for OpenMP* threading -parallel

15

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Architecture Specific Switches

Functionality Linux

Optimize for current machine -xHOST

Generate SSE v1 code -xSSE1

Generate SSE v2 code (may also emit SSE v1 code) -xSSE2

Generate SSE v3 code (may also emit SSE v1 and v2 code) -xSSE3

Generate SSE v3 code for Atom-based processors -xSSE_ATOM

Generate SSSE v3 code (may also emit SSE v1, v2, and v3 code) -xSSSE3

Generate SSE4.1 code (may also emit (S)SSE v1, v2, and v3 code) -xSSE4.1

Generate SSE4.2 code (may also emit (S)SSE v1, v2, v3, and v4 code) -xSSE4.2

Generate AVX code -xAVX

Generate code for Intel Xeon Phi coprocessors -mmic

16

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Memory Reference Disambiguation
Options/Directives related to Aliasing

• -alias_args[-]

• -ansi_alias[-]

• -fno-alias: No aliasing in whole program

• -fno-fnalias: No aliasing within single units

• -restrict (C99): -restrict and restrict attribute

– enables selective pointer disambiguation

• -safe_cray_ptr: No aliasing introduced by Cray-
pointers

• -assume dummy_alias

• Related: Switch –ipo and directive IFDEP

17

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Optimization Report Options

• opt-report

– generate an optimization report to stderr (or file)

• opt-report-file <file>

– specify the filename for the generated report

• opt-report-phase <phase_name>

– specify the phase that reports are generated against

• opt-report-routine <name>

– reports on routines containing the given name

• opt-report-help

– display the optimization phases available for reporting

• vec-report<level>

– Generate vectorization report (IA32, EM64T)

18

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Compiler Optimizer Phases

List of phases the

user can ask to

get detailed

reports from

Only a few phases

are relevant for

the typical

compiler user but

these are really

helpful !

Make use of it –

much easier than

assembler code

inspection

19

ipo
ipo_inl
ipo_cp
ipo_align
ipo_modref
ipo_lpt
ipo_subst
ipo_ratt
ipo_vaddr
ipo_pdce
ipo_dp
ipo_gprel
ipo_pmerge
ipo_dstat
ipo_fps
ipo_ppi
ipo_unref
ipo_wp
ipo_dl
ipo_psplit

ilo
ilo_arg_prefetching
ilo_lowering
ilo_strength_reduction
ilo_reassociation
ilo_copy_propagation
ilo_convert_insertion
ilo_convert_removal
ilo_tail_recursion

hlo
hlo_fusion
hlo_distribution
hlo_scalar_replacement
hlo_unroll
hlo_prefetch
hlo_loadpair
hlo_linear_trans
hlo_opt_pred
hlo_data_trans
hlo_string_shift_replace
hlo_ftae
hlo_reroll
hlo_array_contraction
hlo_scalar_expansion
hlo_gen_matmul
hlo_loop_collapsing

hpo
hpo_analysis
hpo_openmp
hpo_threadization
hpo_vectorization
pgo
tcollect
offload
all

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Sample HLO Report
icc -O3 –opt-report –opt-report-phase hlo

…

LOOP INTERCHANGE in loops at line: 7 8 9

Loopnest permutation (1 2 3) --> (2 3 1)

LOOP INTERCHANGE in loops at line: 15 17

Loopnest permutation (1 2 3) --> (3 2 1)

…

Loop at line 7 unrolled and jammed by 4

Loop at line 8 unrolled and jammed by 4

Loop at line 15 unrolled and jammed by 4

Loop at line 16 unrolled and jammed by 4

…

20

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Compiler Vectorization Report

• Linux
-vec-reportn

• Set diagnostic level dumped to stdout

n=0: No diagnostic information

n=1: (Default) Loops successfully vectorized

n=2: Loops not vectorized – and the reason why not

n=3: Adds dependency Information

n=4: Reports only non-vectorized loops

n=5: Reports only non-vectorized loops and adds dependency info

21

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Compiler Vectorization Report

novec.f90(38): (col. 3) remark: loop was not vectorized: existence of

vector dependence.

novec.f90(39): (col. 5) remark: vector dependence: proven FLOW

dependence between y line 39, and y line 39.

novec.f90(38:3-38:3):VEC:MAIN_: loop was not vectorized: existence of

vector dependence

35: subroutine fd(y)

36: integer :: i

37: real, dimension(10), intent(inout) :: y

38: do i=2,10

39: y(i) = y(i-1) + 1

40: end do

41: end subroutine fd

22

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Agenda

• Introduction to the Intel MIC Architecture

• Programming Models

– Native Programming

– Intel MKL

– Offloading w/ explicit data transfers

– Offloading w/ implicit data transfers

– Vectorization

23

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Intel® Math Kernel Library

• Highly optimized, multi-threaded (when appropriate) math libraries
providing functions often found in:

– Engineering and Manufacturing

– Financial Services

– Geological/Energy Industries

• Automatically optimized for the platform on which the functions are
called:

– Called on the Intel® MIC Architecture, they will make best use of SIMD and
parallelism

• Intel® MKL Functional Domains with Intel® MIC Architecture support:

– Linear Algebra: BLAS, LAPACK, LINPACK

– Sparse BLAS

– Fast Fourier Transforms (FFT) 1D/2D/3D FFT

– Vector Math and Statistical Libraries

24

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Intel® Math Kernel Library

• User can control parallelism in Intel® MKL like they can with
OpenMP* (via mkl_set_num_threads())

• Some Intel® MKL algorithms are designed to be used across multiple
threads

– Example: Vector Statistical Library

o Generates statistically correct random number streams when called
from multiple threads.

o Employs technique where each thread looks at “windows” into a single
random number sequence

– Use on the Intel® MIC Architecture is the same as on the host

• Some Intel® MKL domains offer automatic offload of work to an
available Intel® MIC Architecture coprocessor card

• Intel MKL is part of the Intel C++/Fortran Composer XE 2013

25

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Intel® MIC

•Native execution (of course)

•Identical usage syntax on host and coprocessor

•Functions called from the host execute on the host, functions
called from the coprocessor execute on coprocessor

–User is responsible for data transfer and execution
management between the two domains

Intel® Math Kernel Library Use in Offload
Code

Host

Hetero App

MIC
optimized

Intel® MKL

Offloaded
code

Host
optimized

Intel® MKL Intel® MIC support stack

Native
code

26

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Intel® Math Kernel Library Offload Example

27

Calculates the new value of matrix C based on the matrix product of matrices A

and B, and the old value of matrix C

where α and β values are scalar coefficients

void foo(…) /* Intel MKL Offload Example */

{

float *A, *B, *C; /* Matrices */



#pragma offload target(mic)

in(transa, transb, N, alpha, beta) \

in(A:length(N*N)) \

in(B:length(N*N)) \

inout(C:length(N*N))

sgemm(&transa, &transb, &N, &N, &N, &alpha,

A, &N, B, &N, &beta, C, &N);



}

C  AB + C

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Intel® Math Kernel Library Automatic
Offload
• Transparent load balancing between host and coprocessors

• Initiated by calling mkl_mic_enable() on the host before calling

Intel® MKL functions that implement Automatic Offload

• Call the function from the host code

– No “_Offload” or “#pragma offload” needed

– Intel® MKL is responsible for data transfer and execution management

Host Side

User’s App

Intel® MIC Side

Intel® MIC
optimized

Intel® MKLIntel® MKL
Worker process

Host Optimized
Intel® MKL

Hetero
Intel® MKL

library

28

Transparent
load balancing

Intel® MIC support stack

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Agenda

• Introduction to the Intel MIC Architecture

• Programming Models

– Native Programming

– Intel MKL

– Offloading w/ explicit data transfers

– Offloading w/ implicit data transfers

– Vectorization

29

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Options for Offloading Application Code

• Intel MKL “only” provides fix-function logic

• Programmers often need to offload application-specific code
fragments to the coprocessor

• Intel Composer XE 2013 for MIC supports two models:
– Offload pragmas

o Only trigger offload when a MIC device is present

o Safely ignored by non-MIC compilers

– Offload keywords

o Only trigger offload when a MIC device is present

o Language extensions, need conditional compilation to be ignored

• Offloading and parallelism is orthogonal
– Offloading only transfers control to the MIC devices

– Parallelism needs to be exploited by a second model (e.g. OpenMP*)

30

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Heterogeneous Compiler
Data Transfer Overview

• The host CPU and the Intel® MIC Architecture coprocessor do not
share physical or virtual memory in hardware

• Two offload data transfer models are available:

1. Explicit Copy
o Programmer designates variables that need to be copied between host

and card in the offload directive

o Syntax: Pragma/directive-based

o C/C++ Example: #pragma offload target(mic) in(data:length(size))

o Fortran Example: !dir$ offload target(mic) in(a1:length(size))

2. Implicit Copy
o Programmer marks variables that need to be shared between host

and card

o The same variable can then be used in both host and coprocessor code

o Runtime automatically maintains coherence at the beginning and end
of offload statements

o Syntax: keyword extensions based

o Example: _Cilk_shared double foo; _Cilk_offload func(y);

31

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Heterogeneous Compiler
Offload using Explicit Copies

C/C++ Syntax Semantics

Offload pragma #pragma offload <clauses>

<statement block>

Allow next statement block to
execute on Intel® MIC
Architecture or host CPU

Keyword for
variable & function
definitions

__attribute__((target(mic))) Compile function for, or
allocate variable on, both CPU
and Intel® MIC Architecture

Entire blocks of
code

#pragma offload_attribute(push,

target(mic))


#pragma offload_attribute(pop)

Mark entire files or large
blocks of code for generation
on both host CPU and Intel®
MIC Architecture

Intel® Many Integrated Core Architecture 32

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Heterogeneous Compiler
Offload using Explicit Copies

Fortran Syntax Semantics

Offload directive
!dir$ omp offload <clause>
<OpenMP construct>

Execute next
OpenMP* parallel construct
on Intel® MIC Architecture

!dir$ offload <clauses>
<statement>

Execute next statement
(function call) on Intel® MIC
Architecture

Keyword for
variable/function
definitions

!dir$ attributes
offload:<MIC> :: <rtn-
name>

Compile function or variable
for CPU and Intel® MIC
Architecture

Intel® Many Integrated Core Architecture 33

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Heterogeneous Compiler:
Offloading & OpenMP*

34

C/C++ OpenMP*
#pragma offload target(mic)

#pragma omp parallel for

for (i=0; i<count; i++)

{

a[i] = b[i] * c + d;

}

Fortran OpenMP*
!dir$ omp offload target(mic)

!$omp parallel do

do i=1, count

A(i) = B(i) * c + d

end do

!$omp end parallel do

C/C++ Sequential
#pragma offload target(mic)

for (i=0; i<count; i++)

{

a[i] = b[i] * c + d;

}

Fortran Sequential
!dir$ offload target(mic)

call routine()

subroutine routine()

do i=1, count

A(i) = B(i) * c + d

end do

end subroutine

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

main()

{

copy_code_to_mic();

f();

unload_mic();

}

Heterogeneous Compiler – Conceptual
Transformation

35

f()

{

#pragma offload

a = b + g();

}

__attribute__

((target(mic))) g()

{

}

f_part_mic()

{a = b + g_mic();}

g_mic() {…}

Source Code

Intel ®MIC Program

f_part_host()

{a = b + g();}

g() {…}

Linux* Host Program

f() {

if (mic_available()){

send_data_to_mic();

start_on_mic(f_part_mic);

receive_data_from_mic();

} else

f_part_host();

}

This all
happens

automatically
when you

issue a single
compile

command

main()

{

f();

}

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Heterogeneous Compiler
Offload using Explicit Copies – Clauses

Clauses Syntax Semantics

Target specification target(name[:card_number]) Where to run construct

Conditional offload if (condition) Boolean expression

Inputs in(var-list modifiersopt) Copy from host to coprocessor

Outputs out(var-list modifiersopt) Copy from coprocessor to host

Inputs & outputs inout(var-list modifiersopt) Copy host to coprocessor and
back when offload completes

Non-copied data nocopy(var-list modifiersopt) Data is local to target

Async. offload signal(signal-slot) Trigger async offload

Async. offload wait(signal-slot) Wait for completion

Variables and pointers restricted to scalars, structs of scalars, and arrays of scalars

36

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Heterogeneous Compiler
Offload using Explicit Copies – Modifiers

Modifiers Syntax Semantics

Specify pointer length length(element-count-expr) Copy N elements of the pointer’s
type

Control pointer memory
allocation

alloc_if (condition) Allocate memory to hold data
referenced by pointer if condition
is TRUE

Control freeing of pointer
memory

free_if (condition) Free memory used by pointer if
condition is TRUE

Control target data
alignment

align (expression) Specify minimum memory
alignment on target

Variables and pointers restricted to scalars, structs of scalars, and arrays of scalars

37

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Heterogeneous Compiler – Offload using
Explicit Copies – Modifier Example

38

float reduction(float *data, int numberOf)

{

float ret = 0.f;

#pragma offload target(mic) in(data:length(numberOf))

{

#pragma omp parallel for reduction(+:ret)

for (int i=0; i < numberOf; ++i)

ret += data[i];

}

return ret;

}

Note: copies numberOf elements to the coprocessor, not
numberOf*sizeof(float) bytes – the compiler knows data’s type

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Heterogeneous Compiler – Offload using
Explicit Copies – Data Movement

• Default treatment of in/out variables in a #pragma offload

statement

– At the start of an offload:

o Space is allocated on the coprocessor

o in variables are transferred to the coprocessor

– At the end of an offload:

o out variables are transferred from the coprocessor

o Space for both types (as well as inout) is deallocated on the coprocessor

39

Host MIC

#pragma offload inout(pA:length(n))
{...}

Allocate

1

Copy back

4

Copy over

2

Free

5

pA

3

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Double Buffering Example - Main

40

Allocate arrays on target:
alloc_if(1)

Retain for duration of sample:
free_if(0)

in1 and in2 represent 2 separate
buffers.

Free target allocations:
free_if(1)

int main(int argc, char* argv[]) {

int i;

double st_time, end_time;

double sync_tm, async_in_tm;

// Allocate & initialize in1, res1,

// in2, res2 on the host

#pragma offload_transfer target(mic:0) in(cnt) \

nocopy(in1, res1, in2, res2 : length(cnt) \

alloc_if(1) free_if(0))

do_async_in();

// Validate results and print timings

#pragma offload_transfer target(mic:0) \

nocopy(in1, res1, in2, res2 : length(cnt) \

alloc_if(0) free_if(1))

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Double Buffering – do_asynch_in, evens

41

Begin an initial transfer of the first dataset for the
target to work on. Transfer begins immediately, is
non-blocking, and will signal when complete.

For even loop iterations (except the final), first start
another non-blocking transfer of the next dataset.

While that transfer
progresses, process the
previous dataset through
the compute() function,
first waiting for its transfer
to complete, then return a
result. Execution on the
host waits for the function
to return.

void do_async_in() {

float lsum;

int i;

lsum = 0.0f;

#pragma offload_transfer target(mic:0) \

in(in1 : length(cnt) alloc_if(0) free_if(0)) signal(in1)

for (i=0; i < iter; i++) {

if (i%2 == 0) {

#pragma offload_transfer target(mic:0) if(i!=iter-1) \

in(in2 : length(cnt) alloc_if(0) free_if(0)) \

signal(in2)

#pragma offload target(mic:0) nocopy(in1) wait(in1) \

out(res1 : length(cnt) alloc_if(0) free_if(0))

{

compute(in1, res1);

}

lsum = lsum + sum_array(res1);

}

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

else {

#pragma offload_transfer target(mic:0) if(i!=iter-1) \

in(in1 : length(cnt) alloc_if(0) free_if(0)) \

signal(in1)

#pragma offload target(mic:0) nocopy(in2) wait(in2) \

out(res2 : length(cnt) alloc_if(0) free_if(0))

{

compute13(in2, res2);

}

lsum = lsum + sum_array(res2);

}

}

async_in_sum = lsum / (float) iter;

}

Double Buffering – do_asynch_in, odds

42

For odd iterations (except
the final), work on the other
buffer. Start another non-
blocking transfer.

Offload the compute
function, and host
waits for the result.
Repeat, alternating
between the buffers
(in1 & in2).

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Agenda

• Introduction to the Intel MIC Architecture

• Programming Models

– Native Programming

– Intel MKL

– Offloading w/ explicit data transfers

– Offloading w/ implicit data transfers

– Vectorization

43

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Heterogeneous Compiler
Offload using Implicit Copies

• Section of memory maintained at the same virtual address on
both the host and Intel® MIC Architecture coprocessor

• Reserving same address range on both devices allows
– Seamless sharing of complex pointer-containing data structures

– Elimination of user marshaling and data management

– Use of simple language extensions to C/C++

44

Host
Memory

KN*
Memory

Offload code

C/C++ executable

Host Intel® MIC

Same address
range

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Heterogeneous Compiler
Offload using Implicit Copies

• When “shared” memory is synchronized

– Automatically done around offloads (so memory is only synchronized on
entry to, or exit from, an offload call)

– Only modified data is transferred between CPU and coprocessor

• Dynamic memory you wish to share must be allocated with special
functions: _Offload_shared_malloc,
_Offload_shared_aligned_malloc, _Offload_shared_free,

_Offload_shared_aligned_free

• Allows transfer of C++ objects

– Pointers are no longer an issue when they point to “shared” data

• Well-known methods can be used to synchronize access to shared data
and prevent data races within offloaded code

– E.g., locks, critical sections, etc.

This model is integrated with the Intel® Cilk™ Plus parallel extensions

45

Note: Not supported on Fortran - available for C/C++ only

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Heterogeneous Compiler
Keyword _Cilk_shared for Data/Functions

Intel® Many Integrated Core Architecture 46

What Syntax Semantics

Function int _Cilk_shared f(int x)

{ return x+1; }

Versions generated for both
CPU and card; may be
called from either side

Global _Cilk_shared int x = 0; Visible on both sides

File/Function
static

static _Cilk_shared int x; Visible on both sides, only to
code within the file/function

Class class _Cilk_shared x {…}; Class methods, members,
and and operators are
available on both sides

Pointer to shared
data

int _Cilk_shared *p; p is local (not shared), can
point to shared data

A shared pointer int *_Cilk_shared p; p is shared; should only
point at shared data

Entire blocks of
code

#pragma offload_attribute(

push, _Cilk_shared)


#pragma offload_attribute(pop)

Mark entire files or large
blocks of code _Cilk_shared
using this pragma

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Heterogeneous Compiler
Implicit: Offloading using _Offload

Feature Example Description

Offloading a
function call

x = _Cilk_offload func(y); func executes on

coprocessor if possible

x = _Cilk_offload_to

(card_number) func(y);

func must execute on

specified coprocessor

Offloading
asynchronously

x = _Cilk_spawn

_Cilk_offload func(y);

Non-blocking offload

Offload a
parallel for-loop

_Offload _Cilk_for(i=0; i<N; i++)

{

a[i] = b[i] + c[i];

}

Loop executes in
parallel on target. The
loop is implicitly
outlined as a function
call.

47

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Heterogeneous Compiler
Implicit: Offloading using _Offload Example

// Shared variable declaration for pi

_Cilk_shared float pi;

// Shared function declaration for

// compute

_Shared void compute_pi(int count)

{

int i;

#pragma omp parallel for \

reduction(+:pi)

for (i=0; i<count; i++)

{

float t = (float)((i+0.5f)/count);

pi += 4.0f/(1.0f+t*t);

}

}

void findpi()

{

int count = 10000;

// Initialize shared global

// variables

pi = 0.0f;

// Compute pi on target

_Offload compute_pi(count);

pi /= count;

}

48

_Cilk_offload

compute_pi(count);

_Cilk_shared void compute_pi(int count)

{

int i;

#pragma omp parallel for \

reduction(+:pi)

for (i=0; i<count; i++)

{

float t = (float)((i+0.5f)/count);

pi += 4.0f/(1.0f+t*t);

}

}

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Heterogeneous Compiler
Command-line Options

Offload-specific arguments to the Intel® Compiler:

• Produce a report of offload data transfers at compile time (not runtime)
-opt-report-phase:offload

• Add Intel® MIC Architecture compiler switches
-offload-copts:“switches”

• Add Intel® MIC Architecture archiver switches
-offload-aropts:“switches”

• Add Intel® MIC Architecture linker switches
-offload-ldopts:“switches”

Example:
icc –g –O2 –mkl –offload-build –offload-copts:”-g -03”

–offload-ldopts:”-L/opt/intel/composerxe_mic/mkl/lib/mic”

foo.c

49

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Agenda

• Introduction to the Intel MIC Architecture

• Programming Models

– Native Programming

– Intel MKL

– Offloading w/ explicit data transfers

– Offloading w/ implicit data transfers

– Vectorization

50

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Parallelization and Vectorization are Key

• Performance increasingly depends on both threading and
vectorization

• Also true for “traditional” Xeon-based computing

Multi-threading

V
e
c
to

ri
z
a
ti
o
n

sequential,
no vectorization

multi-threaded,
no vectorization

sequential,
fully vectorized

multi-threaded,
vectorized

51

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Positioning of SIMD Features

ASM code (addps)

Vector intrinsic (_mm_add_ps())

SIMD intrinsic class (F32vec4 add)

SIMD feature (#pragma simd and simd
function annotation)

Auto vectorization hints (#pragma ivdep)

Fully automatic vectorization

Programmer control

Ease of use

52

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Auto-vectorization

• Be “lazy” and try auto-vectorization first

– If the compiler can vectorize the code, why bother

– If it fails, you can still deal w/ (semi-)manual vectorization

• Compiler switches of interest:
-vec (automatically enabled with –O3)

-vec-report

-opt-report

53

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Why Didn’t My Loop Vectorize?

• Linux Windows
-vec-reportn /Qvec-reportn

• Set diagnostic level dumped to stdout

n=0: No diagnostic information

n=1: (Default) Loops successfully vectorized

n=2: Loops not vectorized – and the reason why not

n=3: Adds dependency Information

n=4: Reports only non-vectorized loops

n=5: Reports only non-vectorized loops and adds dependency info

54
54

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Compiler Vectorization Report

novec.f90(38): (col. 3) remark: loop was not vectorized: existence of

vector dependence.

novec.f90(39): (col. 5) remark: vector dependence: proven FLOW

dependence between y line 39, and y line 39.

novec.f90(38:3-38:3):VEC:MAIN_: loop was not vectorized: existence of

vector dependence

35: subroutine fd(y)

36: integer :: i

37: real, dimension(10), intent(inout) :: y

38: do i=2,10

39: y(i) = y(i-1) + 1

40: end do

41: end subroutine fd

55

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

When Vectorization Fails …

• Most frequent reason: Data dependencies
– Simplified: Loop iterations must be independent

• Many other potential reasons
– Alignment

– Function calls in loop block

– Complex control flow / conditional branches

– Loop not “countable”
o E.g. upper bound not a run time constant

– Mixed data types (many cases now handled successfully)

– Non-unit stride between elements

– Loop body too complex (register pressure)

– Vectorization seems inefficient

– Many more … but less likely to occur

56

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Data Dependencies

• Suppose two statements S1 and S2

• S2 depends on S1, iff S1 must be executed before
S2

– Control-flow dependence

– Data dependence

– Dependencies can be carried over between loop iterations

• Flavors of data dependencies

FLOW ANTI

s1: a = 40 b = 40

b = 21 s1:a = b + 1

s2: c = a + 2 s2:b = 21

57

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Disambiguation Hints
The restrict Keyword for Pointers

void scale(int *a, int * restrict b)

{

for (int i=0; i<10000; i++) b[i] = z*a[i];

}

// two-dimension example:

void mult(int a[][NUM],int b[restrict][NUM]);

Linux Windows

-restrict /Qrestrict

-std=c99 /Qstd=c99

– Assertion to compiler, that only the pointer or a value based
on the pointer - such as (pointer+1) - will be used to
access the object it points to

– Only available for C, not C++

58

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Unsupported Loop Structure

• Unsupported loop structure usually means, the
compiler can’t construct a runtime expression for
the loop’s trip-count

– E.g. a while-loop where the number of iterations cannot be
determined at (run-time) start of loop

– Upper/lower bound of a for-loop cannot be a determined to
be loop-invariant

59

struct _x { int d; int bnd;};

doit1(int *a, struct _x *x)

{

for (int i=0; i < x->bnd; i++)

a[i] = 0;

}

struct _x { int d; int bnd;};

doit1(int *a, struct _x *x)

{

int ub = x->bnd;

for (int i=0; i < ub; i++)

a[i] = 0;

}

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Guided Vectorization

• SIMD Directives

– The SIMD directive provides additional information to
compiler to enable vectorization of loops (at this time only
inner loop)

– More a command to the compiler than a hint

– The compiler’s heuristics are completely overwritten as
long as a clear logical fault is not being introduced

– Inspired by the OpenMP directives:

60

OpenMP

Automatic Parallelization

User Mandated Vectorization

Pure Automatic Vectorization

60

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

SIMD Directive Notation

C/C++: #pragma simd [clause [,clause] …]

Fortran: !DIR$ SIMD [clause [,clause] …]

• Without any additional clause, the directive
enforces vectorization of the (innermost) loop

• Example:

void add_fl(float* a, float* b, float* c, float* d, float* e, int n)

{

#pragma simd

for (int i=0; i<n; i++)

a[i] = a[i] + b[i] + c[i] + d[i] + e[i];

}

Without the SIMD directive, vectorization will fail (too many pointer references to do a run-time overlap-check).

61

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

vectorlength(num1, num2, …, numN)

– Each iteration in the vector loop will execute the computation
equivalent to the VL-iters of scalar loop execution.

private(var1, var2, …, varN)

– variables private to each iteration. Initial value is broadcast to all
private instances, and the last value is copied out from the last
iteration instance.

linear(var1:step1, var2:step2, …, varN:stepN)

– for every iteration of scalar loop, varX is incremented by stepX,.
Every iteration of the vector loop, therefore increments varX by
VL*stepX

reduction(operator:var1, var2,…, varN)

– perform vector reduction of operator kind has to be applied to varX

[no]assert

– assert or do not assert when the vectorization fails. Default is to
assert for SIMD pragma.

Clauses of SIMD Directive

62

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Sample: Reductions

63

float sprod(float *a, float *b, int n)

{

float sum = 0.0f;

for (int k=0; k<n; k++)

sum += a[k] * b[k];

return sum;

}

void sprod(float *a, float *b, int n)

{

float sum = 0.0f;

#pragma simd vectorlength(16) reduction(+:sum)

for (int k=0; k<n; k++)

sum += a[k] * b[k];

return sum;

}

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Vectorizable Mathematical Functions

• Calls to most mathematical functions in loops can
be “vectorized” by calling their vector versions in
libsvml (Short Vector Math Library)

– libsvml is optimized for
latency

– Intel® MKL is optimized
for throughput

– Routines in libsvml can be
called explicitly
(see manual)

– KNC will have machine
instructions for
transcendentals

64

acos ceil fabs round

acosh cos floor sin

asin cosh fmax sinh

asinh erf fmin sqrt

atan erfc log tan

atan2 erfinv log10 tanh

atanh exp log2 trunc

cbrt exp2 pow

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Vectorization: Array Section Notation

• Part of Intel Cilk Plus

• Array Section Notation

<array base> [<lower bound> : <length> [: <stride>]]

[<lower bound> : <length> [: <stride>]].....

• Note that length is chosen.

– Not upper bound as in Fortran
([lower bound : upper bound])

A[:] // All elements of vector A

B[2:6] // Elements 2 to 7 of vector B

C[:][5] // Column 5 of matrix C

D[0:3:2] // Elements 0,2,4 of vector D

E[0:3][0:4] // 12 elements from E[0][0] to E[2][3]

65

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Operator Maps

• Most arithmetic and logic operators for C/C++
basic data types are available for array sections:
+, -, *, /, %, <,==,!=,>,|,&,^,&&,||,!,-(unary),

+(unary),++,--, +=, -=, *=, /=, *(p)

• An operator is implicitly mapped to all the
elements of the array section operands:

a[0:s]+b[2:s] => {a[i]+b[i+2], forall (i=0;i<s;i++)}

– Operations are parallel among all the elements

– Array operands must have the same rank

– Scalar operand is automatically expanded to fill the whole
section

a[0:s]*c => {a[i]*c, forall (i=0;i<s;i++)}

66

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Reduction

Combine all the elements in an array section using a
predefined operator, or a user function

int a[] = {1,2,3,4};

sum = __sec_reduce_add(a[:]); // sum is 10

res = __sec_reduce(fn, a[:], 0);

// apply function fn to all

// elements in a[], identity value is 0

Other reductions:

__sec_reduce_mul, __sec_reduce_all_zero,
__sec_reduce_all_nonzero, __sec_reduce_any_nonzero,
__sec_reduce_max, __sec_reduce_min,
__sec_reduce_max_ind, __sec_reduce_min_ind

67

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Manual Vectorization

• If automatic and guided vectorization do not meet
expected results, programmers can manually
vectorize

– Intrinsic functions are functions with “special” meaning to
the compiler

– Vector intrinsics map to the machine’s vector instructions

• Last resort of getting performance

– Maximum of control

– (Hopefully) maximum of performance

– (Surely) maximum of “pain”: prone to errors, cumbersome

68

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Sample: Manual Vectorization

• For the following slide we make the following
assumptions (otherwise, we’d run out of space)

– Input and output data is properly aligned to 64 bytes

– Vector length is a multiple of the vector length

• If assumptions do not hold, add code to:

1. Peel off iterations 0..m to get rid of alignment issue

2. Have a vectorized loop to do the work

3. Peel off iterations n..N-1 to deal with remaining data

void vecmul(float *a, float *b, float *c, int n)

{

for (int k=0; k<n; k++) c[k] = a[k] * b[k];

}

69

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Sample: Manual Vectorization

#include <immintrin.h>

void vecmul(float *a, float *b, float *c, int n) {

int i;

__m512 va;

__m512 vb;

__m512 vc;

for (i = 0; i < n; i += 16,

a += 16, b += 16, c += 16) {

_mm_prefetch((const char*) (a + 16), _MM_HINT_T0);

va = _mm512_load_ps(a);

vb = _mm512_extload_ps(b, _MM_UPCONV_PS_NONE,

_MM_BROADCAST32_NONE,

_MM_HINT_NONE);

vc = _mm512_mul_ps(va, vb);

_mm512_store_ps(c, vc);

}

}

70

• Loop unrolling by 16
(i.e. vector length)

• Increment pointers

Vector registers

Vector instructions

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

Questions?

71

Programming for the Intel® Xeon Phi™ Coprocessor

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Optimization
Notice

72

