
SCALABLE HYBRID

PROTOTYPE

Scalable Hybrid Prototype

Part of the PRACE Technology Evaluation

Objectives

– Enabling key applications on new architectures

– Familiarizing users and providing a research platform

– Whole system benchmarking energy efficiency,

productivity and performance

Located at CSC – IT Center for Science Ltd

– Espoo, Finland

Documentation of the system

https://confluence.csc.fi/display/HPCproto/HPC+Prototypes

https://confluence.csc.fi/display/HPCproto/HPC+Prototypes

Current Configuration

master – Head node (frontend)

– Users login here

– Program development and test runs

– Contains a single Xeon Phi for development

– Freely shared resource: Do not use for heavy

computation or performance measurements!

node[02-10] Compute nodes

– Accessible via the batch job queue system

– node[02-05] Xeon Phi

node[02-05]-mic0 Xeon Phi hostnames

– node[06-10] Nvidia Kepler

Diagram of a Xeon Phi node

Host RAM (bank 1)

16GB

CPU1
c0 c1 c2

c3 c4 c5

L3 cache (20MB)

CPU0
c0 c1 c2

c3 c4 c5

L3 cache (20MB)

Host RAM (bank 0)

16GB

DDR3 51,2GB/s

DDR3 51,2GB/s

QPI 96GB/s

MIC CPU
c0 c1 c59

L2 cache (30MB)

MIC memory banks

8GB

GDDR5 320GB/s

PCIe2

8GB/s
c58

Host

…

Xeon Phi

PCIe2

8GB/s

InfiniBand card

InfiniBand

HCA

FDR InfiniBand

7GB/s

Packages

Cores

Memory

Other

nodes

First Login

ssh to hybrid.csc.fi with your training account

Create a passwordless host key

Try logging into the MIC card

– Hostname mic0 or master-mic0

$ ssh –Y hybrid.csc.fi –l trngNN

$ ssh-keygen -f $HOME/.ssh/id_rsa -N '‘

$ cp $HOME/.ssh/id_rsa.pub $HOME/.ssh/authorized_keys

$ ssh mic0

Using Modules

Environment-modules package used to manage

different programming environment settings

Examples of usage

– To load the latest version of Intel compilers, use:

– To see all available modules:

– To see what modules are loaded

$ module load intel

$ module avail

$ module list

Custom configuration on Hybrid

NFS mounts

– /home, /share, /usr/local

Additional native support libraries and programs

– Python, HDF5, gcc etc.

– Small libraries and utilities (strace etc.)

SLURM batch job queuing system

Execution auto-offload on frontend

Some common paths preset on the Phi

– i.e. /opt/intel/composerxe/mic/lib64

Execution Auto-offload

Developed at CSC

– Implemented in the frontend node

– Makes e.g. cross-compiling much easier

1. Detects if MIC binary is executed on the host

– Normally this fails with ”cannot execute binary file”

2. Runs the binary on the Xeon Phi using micrun

– Transparent to the end user

– Environment variables are passed with MIC_ prefix

– Return values are passed correctly

Can be disabled by MICRUN_DISABLE=1

SLURM Batch Job Queue System

Reserves and allocates nodes to jobs

At CSC we are moving to use SLURM on all

systems

– Designed for HPC from the ground up

– Open source, extendable, lightweight

– Becoming increasingly popular in the HPC community

MIC support in development

– Offload support in v. 2.5 (Nov 2012)

– Native/symmetric model via a helper script

SLURM commands

Checking the queue

Checking node status

Running a job interactively

Sending a batch job

$ srun [command]

$ squeue

$ sinfo [-r]

$ sbatch [job script]

For simplicity all of the following examples use interactive execution (srun).

However for ”real” work you should run batch jobs.

Submitting interactive jobs (srun)

Interactive shell session

Single thread on MIC

Multiple threads on MIC

$ export MIC_OMP_NUM_THREADS=2

$ srun ./omphello.mic

Hello from thread 0 at node02-mic0

Hello from thread 1 at node02-mic0

$ srun ./omphello.mic

Hello from thread 0 at node02-mic0

$ srun -–pty /bin/bash -l

$ hostname

node02

$ exit

$ hostname

master

All MIC_ prefixed env.

variables will be passed

to the MIC card

Remember to exit the

Interactive session!

Submitting an Offload Job

Applicable to LEO, OpenCL, MKL offload …

Requires the GRES parameter to be used

– If you don’t use it, you get a cryptic error

MPI offload job

$ srun –-gres=mic:1 ./hello_offload

Hello from offload section in node02-mic0

$ srun ./hello_offload

offload warning: OFFLOAD_DEVICES device number -1

does not correspond to a physical device

$ srun –n 2 –-tasks-per-node 1 ./mpihello_offload

Hello from offload section in node02-mic0

Hello from offload section in node03-mic0

Submitting a native MPI job

MPI tasks only on MIC nodes

Several parameters must be defined

– Define # tasks and threads with environment variables

MIC_PPN and MIC_OMP_NUM_THREADS

– Set number of nodes using –N slurm flag

– Use mpirun-mic to launch the executable

Use the –m flag to specify the MIC executable

$ export MIC_PPN=4

$ export MIC_OMP_NUM_THREADS=60

$ srun -N 2 mpirun-mic -m ./mpiomphello.mic

MPI tasks per MIC Threads per MIC MPI task

Node count MIC executable

Submitting a Symmetric Job

MPI tasks on MIC and host

Similar to native MPI but some more parameters

– Define # of host tasks with environment variable

OMP_NUM_THREADS

– Use SLURM flags to define # of CPU host tasks

For example -n and --tasks-per-node

– Add the executable to the mpirun-mic command

Use the -c flag to specify the CPU host executable

$ export MIC_PPN=4

$ export MIC_OMP_NUM_THREADS=60

$ export OMP_NUM_THREADS=6

$ srun -n 2 mpirun-mic -m ./mpiomphello.mic –c ./mpiomphello

MPI tasks per MIC Threads per MIC MPI task

Host MPI task count MIC executable

Threads per host MPI task

MIC executable

Further mpirun-mic settings

The –v flag shows the underlying mpiexec

command to be run

The –h flag provides help

You can define additional parameters to the

underlying mpiexec –command by setting the

following env variables

– MPIEXEC_FLAGS_HOST & MPIEXEC_FLAGS_MIC

– For example:

$ export MPIEXEC_FLAGS_HOST=”-prepend-rank \

 –env KMP_AFFINITY verbose”

Protip: MIC Environment Variables

You may want to load a set of environment

variables to the MIC card but not on the host

This might be difficult with a shared home

directory

Put a conditional like this in your
$HOME/.profile to run MIC-specific

environment setup commands

 if [`uname -m` == 'k1om']; then
 echo I am MIC!

fi

Protip: Cross-compiling in Practice

GNU cross-compiler environment for Phi

– Located in /usr/x86_64-k1om-linux

Enables building legacy libraries and

applications for Xeon Phi

– In practice it can be difficult

– Typical build script (usually ./configure) rarely

designed with good cross-compiling support

Requires a varying extent of hand tuning

– The executable auto offload makes things somewhat

easier

Typical Cross-compile on Hybrid

1. Set environment variables to point to cross-compiler and support libraries

2. Run configure

3. Fix linker flags in all Makefiles and libtools that are probably incorrect

4. Run make

export LDFLAGS='-L/usr/local/linux-k1om-4.7/x86_64-k1om-linux/lib/ \

-Wl,-rpath=/usr/local/linux-k1om-4.7/x86_64-k1om-linux/lib/’

export CFLAGS="-I/usr/local/linux-k1om-4.7/x86_64-k1om-linux/include”

./configure --host=x86_64-k1om-linux [other configure flags]

for i in `find -name Makefile` ;do sed -i -e \

's@-m elf_x86_64@-m elf_k1om@' $i;done

for i in `find -name libtool`; do sed -i -e \

's@-m elf_x86_64@-m elf_k1om@' $i;done

make

