SCALABLE HYBRID
PROTOTYPE

~-

CScC

Scalable Hybrid Prototype

o Part of the PRACE Technology Evaluation

v Objectives
— Enabling key applications on new architectures
— Familiarizing users and providing a research platform

— Whole system benchmarking energy efficiency,
productivity and performance

v Located at CSC - IT Center for Science Ltd
— Espoo, Finland

¢ Documentation of the system

https://confluence.csc.fi/display/HPCproto/HPC+Prototypes

CScC

Current Configuration

v master — Head node (frontend)
— Users login here
— Program development and test runs
— Contains a single Xeon Phi for development

— Freely shared resource: Do not use for heavy
computation or performance measurements!

v node[02-10] Compute nodes

— Accessible via the batch job queue system

— node[02-05] Xeon Phi
v node[02-05]-mic0 Xeon Phi hostnames

— node[06-10] Nvidia Kepler

Diagram of a Xeon Phi node

Host RAM (bank 0)

DDR351,2GB/s

(o{0) cl c2

__

MIC memory banks

8GB

) cl'" . "c58 €59

L3 cache (20MB)

c3 c4 c5

QPI 96GB/s

c0 cl c2
L3 cache (20MB)

c3 c4 c5

Host RAM (bank 1)

' DDR351,2GB/s

16GB

L2 cache (30MB)

1] 1] eoors s206ess |

~-

CScC

First Login

@ ssh to hybrid.csc.fi with your training account

$ ssh =Y hybrid.csc.fi -1 trngNN

v Create a passwordless host key

$ ssh-keygen -f SHOME/.ssh/id rsa -N '
$ cp SHOME/.ssh/id rsa.pub SHOME/.ssh/authorized keys

v Try logging into the MIC card
— Hosthame micO or master-micO

$ ssh micO

~-

CScC

Using Modules

¢ Environment-modules package used to manage
different programming environment settings
v Examples of usage

— To load the latest version of Intel compilers, use:
$ module load intel

— To see all available modules:

S module avail

— To see what modules are loaded

S module list

~-

CScC

Custom configuration on Hybrid

o NFS mounts
— /home, /share, /usr/local

« Additional native support libraries and programs

— Python, HDF5, gcc etc.
— Small libraries and utilities (strace etc.)

¢ SLURM batch job queuing system
v Execution auto-offload on frontend

@ Some common paths preset on the Phi
— 1.e. /opt/intel/composerxe/mic/lib64

CScC

Execution Auto-offload

v Developed at CSC
— Implemented in the frontend node
— Makes e.g. cross-compiling much easier

1. Detects if MIC binary is executed on the host
— Normally this fails with "cannot execute binary file"
2. Runs the binary on the Xeon Phi using micrun

— Transparent to the end user

— Environment variables are passed with MIC__ prefix
— Return values are passed correctly

o« Can be disabled by MICRUN_DISABLE=1

~-

CScC

SLURM Batch Job Queue System

v Reserves and allocates nodes to jobs

v At CSC we are moving to use SLURM on all
systems
— Designed for HPC from the ground up
— Open source, extendable, lightweight
— Becoming increasingly popular in the HPC community

v MIC support in development
— Offload supportinv. 2.5 (Nov 2012)
— Native/symmetric model via a helper script

slurm

worklobad manager

CScC

SLURM commands

¢ Checking the queue

$ squeue
¢ Checking node status

S sinfo [-r]

¢ Running a job interactively
S srun [command]
¢ Sending a batch job

$ sbatch [job script]

For simplicity all of the following examples use interactive execution (srun).
However for "real” work you should run batch jobs.

~-

CScC

Submitting interactive jobs (srun)

v Interactive shell session

$ srun --pty /bin/bash -1
S hostname

node0?2 .
S exit <= Remember to exit the
S hostname Interactive session!
master

v Single thread on MIC

$ srun ./omphello.mic
Hello from thread 0 at node02-micO

@ Multiple threads on MIC A preT B leny
$ export MIC OMP NUM THREADS=2 < variables will be passed
S srun ./omphello.mic to the MIC card

Hello from thread 0 at node02-micO
Hello from thread 1 at node02-micO

~-

CScC

Submitting an Offload Job

v Applicable to LEO, OpenCL, MKL offload ...
v Requires the GRES parameter to be used

$ srun —-gres=mic:1l ./hello offload
Hello from offload section in node02-micO

— If you don’t use it, you get a cryptic error

$ srun ./hello offload
offload warning: OFFLOAD DEVICES device number -1
does not correspond to a physical device

¢ MPI offload job

$ srun —-n 2 —-tasks-per-node 1 ./mpihello offload
Hello from offload section in node02-micO
Hello from offload section in node03-micO

~-

CScC

Submitting a native MPI job

v MPI tasks only on MIC nodes

v Several parameters must be defined

— Define # tasks and threads with environment variables
@ MIC PPN and MIC OMP NUM THREADS
— Set number of nodes using —-N slurm flag

— Use mpirun-mic to launch the executable
v Use the —m flag to specify the MIC executable

MPI tasks per MIC Threads per MIC MPI task

N

$ export MIC PPN=4
$ export MIC OMP NUM THREADS=60

$ srun -N 2 mpirun-mic -m ./mpiomphello.mic
S
Node count MIC executable

¢ MPI tasks on MIC and host

~-

Submitting a Symmetric Job

¢ Similar to native MPI but some more parameters
— Define # of host tasks with environment variable

Ur Ur Ur Ur

© OMP_NUM THREADS

— Use SLURM flags to define # of CPU host tasks
v For example -n and --tasks-per-node
— Add the executable to the mpirun-mic command
v Use the -c flag to specify the CPU host executable

MPI tasks per MIC Threads per MIC MPI task

Threads per host MPI task

export MIC PPN=4

export MIC OMP NUM THREADS=60
export OMP NUM THREADS=6

srun -n 2 mpirun-mic -m ./mpiomphello.mic -c ./mpiomphello

AN
Host MPI task count

AL

MIC executable

MIC executable

~-

CScC

Further mpirun-mic settings

v The —v flag shows the underlying mpiexec
command to be run

v The —h flag provides help

@ You can define additional parameters to the
underlying mpiexec —command by setting the
following env variables
— MPIEXEC FLAGS HOST & MPilE gEG BELAGeSy MTC
— For example:

$ export MPIEXEC FLAGS HOST="-prepend-rank \
—env KMP AFFINITY verbose”

~-

CScC

Protip: MIC Environment Variables

¢ You may want to load a set of environment
variables to the MIC card but not on the host

« This might be difficult with a shared home
directory

o Put a conditional like this in your
SHOME/ .profile torun MIC-specific

environment setup commands

if ["uname -m == 'klom']; then
echo I am MIC!
fi

~-

CScC

Protip: Cross-compiling in Practice

@ GNU cross-compiler environment for Phi
— Located in /usr/x86 64-klom-linux

¢ Enables building legacy libraries and
applications for Xeon Phi
— In practice it can be difficult

— Typical build script (usually ./configure) rarely
designed with good cross-compiling support

v Requires a varying extent of hand tuning

— The executable auto offload makes things somewhat
easier

~-

CscC

Typical Cross-compile on Hybrid

1. Setenvironment variables to point to cross-compiler and support libraries

export LDFLAGS='-L/usr/local/linux-klom-4.7/x86 64-klom-linux/lib/ \
-W1l, -rpath=/usr/local/linux-klom-4.7/x86 64-klom-linux/lib/’
export CFLAGS="-I/usr/local/linux-klom-4.7/x86 64-klom-linux/include”

2. Run configure

./configure --host=x86 64-klom-linux [other configure flags]
3. Fixlinker flags in all Makefiles and libtools that are probably incorrect
for i in "find -name Makefile® ;do sed -i -e \
's@-m elf x86 64@-m elf klom@' S$i;done
for i in "find -name libtool’; do sed -i -e \

's@-m elf x86 64@-m elf klom@' $i;done

4. Run make

make

