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Agenda

• Porting Checklist

• Performance Tuning Utilities

• Performance Tuning Hints

• Advanced Performance Tuning
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Agenda

• Porting Checklist

– Choosing the right path

– Host pre-work to characterize and correct

• Performance Tuning Utilities

• Performance Tuning Hints

• Advanced Performance Tuning
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Pick the configuration to match the most 
efficient formulation of your algorithm

• Choose the right vehicle

• Pick your path to performance

• Intel® Architecture families’ different design goals

– Intel Xeon® architecture features large, fast, versatile cores

– Intel® Xeon Phi™ architecture features smaller and slower but 
wider and numerous cores

• Intel® Xeon processors and Intel® Xeon Phi™ 
coprocessors differ in their optimization plans to 
match these differences
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First decision: host vs. native vs. offload

• Native only (running solely on the coprocessor)

 Easy to port: change some switches, add libs, drive with ssh or MPI

 Scalar and IO-intensive parts run slowly

 Memory limited to 8GB

• Host with offload

 Better performance when serial/sequential fraction is significant

 Enables memory footprint >> working set, e.g. via pipelining

 Path to hybrid, since no reverse offload

 Higher porting costs

 Need identifiable hotspots to select for offload

• “Hybrid” host + coprocessor

 Best performance for parallel cases

 More effort to manage concurrency with async or multithreading
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Use host-based profiling to identify 
vectorization/parallelism/offload candidates

• Start with representative/reasonable workloads!

• Use VTune™ Amplifier XE to gather hot spot data

– Tells what functions account for most of the run time

– Often, this is enough

o But it does not tell you much about program structure

• Alternately, profile functions & loops using Intel® Composer XE

– Build with options -profile-functions -profile-loops=all -
profile-loops-report=2

– Run the code (which may run slower) to collect profile data

– Look at the resulting dump files, or open the xml file with the data viewer 
loopprofileviewer.sh located in the compiler ./bin directory

– Tells you
o which loops and functions account for the most run time

o how many times each loop executes (min, max and average)
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Loop Profiler  - Identify Time Consuming 
Loops / Functions to Optimize
Enables targeting parallelization/optimization efforts to most 

significant code areas ( hotspot identification )

• Easy to use:

– Use compiler switches to add instrumentation to the application

o Compiler instruments entry and exits of all loops and functions

icc -O1 -profile-functions -profile-loops=all -profile-loops-report=2…

– Running the application generates a report file with resulting counts

o Both a human-readable text file (a table) and an XML-file are generated

– Analyze data by looking at the raw text file, or use the GUI viewer shipped with 
compiler 

• Report file contains information such as:

– Call count of routines

– Self-time of  functions / loops

– Total-time of functions / loops

– Average, minimum, maximum iteration counter of loops  !!
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Loop Profile Data Viewer GUI
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Loop Profile Data Viewer GUI

10



Optimization Strategies

Software & Services Group, Developer Products Division

Copyright© 2013, Intel Corporation. All rights reserved. Optimization 
Notice

Loop Profile Data Viewer GUI
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Loop Profile Data Viewer GUI
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Loop Profile Data Viewer GUI
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Correctness/Performance Analysis of 
Parallel code
• Intel® Inspector XE and thread-reports in VTune™ Amplifier 

XE are not available (yet) for the Intel® Xeon Phi™ 
Architecture

• So…

– Use Intel® Inspector XE on your code with offload disabled (on host) to 
identify correctness errors (e.g., deadlocks, races)

o Once fixed, then enable offload and continue debugging on the coprocessor

– Use VTune Amplifier XE’s parallel performance analysis tools to find issues 
on the host by running your program with offload disabled

o Fix everything you can

o Then study scaling on the coprocessor using lessons from host tuning to further 
optimize parallel performance

 Be wary of synchronization when the number of threads becomes more than a handful

 Also pay attention to load balance.
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Agenda

• Porting Checklist

• Performance Tuning Utilities

– Compiler static reports

– Runtime library report

– VTune™ Amplifier XE Event-Based Sample collections

• Performance Tuning Hints

• Advanced Performance Tuning
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Sample HLO Report
icc -O3 -opt_report -opt_report_phase hlo

…

LOOP INTERCHANGE in loops at line: 7 8 9

Loopnest permutation ( 1 2 3 ) --> ( 2 3 1 )

LOOP INTERCHANGE in loops at line: 15 17

Loopnest permutation ( 1 2 3 ) --> ( 3 2 1 )

…

Loop at line 7 unrolled and jammed by 4

Loop at line 8 unrolled and jammed by 4

Loop at line 15 unrolled and jammed by 4

Loop at line 16 unrolled and jammed by 4

…
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Compiler Vectorization Report

novec.f90(38): (col. 3) remark: loop was not vectorized: existence of 

vector dependence.

novec.f90(39): (col. 5) remark: vector dependence: proven FLOW 

dependence between y line 39, and y line 39.

novec.f90(38:3-38:3):VEC:MAIN_:  loop was not vectorized: existence of 

vector dependence

35: subroutine fd( y )

36: integer :: i

37: real, dimension(10), intent(inout) :: y

38: do i=2,10

39: y(i) = y(i-1) + 1

40: end do

41: end subroutine fd
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Compiler Vectorization Report

• Indicates whether each loop is vectorized

– Vectorized ≠ efficient

– Compiler reports loop vectorized if any version w/vectorization exists

– At runtime, scalar code may still be executed

• Indicates reasons for not vectorizing

• Line numbers may not be what you’d expected

– Inlining

– Loop distribution, interchange, unrolling, collapsing

18



Optimization Strategies

Software & Services Group, Developer Products Division

Copyright© 2013, Intel Corporation. All rights reserved. Optimization 
Notice

When Vectorization Fails … 

• Most frequent reason: Data dependencies
– Simplified: Loop iterations must be independent

• Many other potential reasons 
– Memory alignment issues

– Function calls in loop block

– Complex control flow / conditional branches 

– Loop not “countable” 
o E.g. upper bound not a run-time constant 

– Mixed data types (many cases now handled successfully)

– Non-unit stride between elements 

– Loop body too complex (register pressure)

– Vectorization seems inefficient

– Many more … but less likely to occur
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Characterization Tools

• Compiler: 

– Vectorization report 

– Optimization report

• Compiler - runtime library reports

– OFFLOAD_REPORT, UNIX* time

20*Other names and brands may be claimed as the property of others
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OFFLOAD_REPORT

• Dynamic report from compiler offload runtime

– Identifies each dynamic instance of an offload by <file, line>

– Records host and coprocessor execution time for that function

• Example

21

[Offload] [MIC 0] [File]            main.c

[Offload] [MIC 0] [Line]            198

[Offload] [MIC 0] [CPU Time]        0.002374 (seconds)

[Offload] [MIC 0] [MIC Time]        0.002149 (seconds)

[Offload] [MIC 0] [File]            mic_mhdf.c

[Offload] [MIC 0] [Line]            162

[Offload] [MIC 0] [CPU Time]        0.956117 (seconds)

[Offload] [MIC 0] [CPU->MIC Data]   134219804 (bytes)

[Offload] [MIC 0] [MIC Time]        0.491518 (seconds)

[Offload] [MIC 0] [MIC->CPU Data]   4 (bytes)

[Offload] [MIC 0] [File]            mic_mhdf.c

[Offload] [MIC 0] [Line]            199

[Offload] [MIC 0] [CPU Time]        0.000000 (seconds)

[Offload] [MIC 0] [CPU->MIC Data]   0 (bytes)

[Offload] [MIC 0] [MIC Time]        0.000000 (seconds)

[Offload] [MIC 0] [MIC->CPU Data]   0 (bytes)

OFFLOAD_REPORT=1

Reports execution times
OFFLOAD_

REPORT=2

Adds size of

offload data

transfers
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Characterization Tools

• Compiler: 

– Vectorization report 

– Optimization report

• Compiler – runtime library reports

– OFFLOAD_REPORT, UNIX* time

• VTune™ Amplifier XE

– Collecting HW performance monitoring data

– Post-processing HW performance monitoring data

o VTune Amplifier: hot spots

o VTune Amplifier: time line 

• Intel® Trace Analyzer and Collector 

22*Other names and brands may be claimed as the property of others
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Collecting Hardware Performance Data

• Hardware counters and events

– 2 counters in core, most are thread specific

– 4 outside the core (uncore) that get no thread or core details

– See PMU documentation for a full list of events

• Collection

– Invoke from VTune Amplifier (or from SEP command line interface)

– If collecting more than 2 core events, select multi-run for more 
precise results or the default multiplexed collection, all in one run

– Uncore events are limited to 4 at a time in a single run

– Uncore event sampling needs a source of PMU interrupts, e.g. 
programming cores to CPU_CLK_UNHALTED

• Output files

– VTune Amplifier performance database
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VTune™ Amplifier XE 
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Some useful events and metrics
Scenario Event name(s)

Wall-clock profiling CPU_CLK_UNHALTED,INSTRUCTIONS_EXECUTED

(or EXEC_STAGE_CYCLES)

Main memory bandwidth L2_DATA_READ_MISS_MEM_FILL,

L2_DATA_WRITE_MISS_MEM_FILL

L1 Cache misses DATA_READ_MISS_OR_WRITE_MISS

TLB misses and page faults DATA_PAGE_WALK, LONG_DATA_PAGE_WALK,

DATA_PAGE_FAULT

Vectorized code execution VPU_INSTRUCTIONS_EXECUTED, 

VPU_ELEMENTS_ACTIVE

Various hazards BRANCHES_MISPREDICTED

Cycles per instruction CPU_CLK_UNHALTED / 

INSTRUCTIONS_EXECUTED

Memory Bandwidth (used by all 
cores at once)

(L2_DATA_READ_MISS_MEM_FILL + 

L2_DATA_WRITE_MISS_MEM_FILL) * 64 / 

CPU_CLK_UNHALTED / Frequency
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• ITAC!!!!
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Intel® Trace Analyzer and Collector Overview

• Intel® Trace Analyzer and 
Collector helps the developer:
– Visualize and understand parallel 

application behavior
– Evaluate profiling statistics and 

load balancing
– Identify communication hotspots

• Features
– Event-based approach
– Low overhead
– Excellent scalability
– Comparison of multiple profiles
– Powerful aggregation and filtering 

functions
– Fail-safe MPI tracing
– Provides API to instrument user 

code
– MPI correctness checking
– Idealizer
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Compare the event 
timelines of two 
communication profiles

Blue = computation
Red = communication

Chart showing how the 
MPI processes interact

Intel® Trace Analyzer and Collector
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ITAC with Intel® Xeon Phi™ Coprocessors

• Run with –trace flag (without linkage) to create a trace file

– MPI+Offload
# mpiexec –trace -n 2 ./test

– Coprocessor only

# mpiexec –trace -n 2 -wdir /tmp

-host 172.31.1.1 /tmp/test_hello.MIC

– Symmetric

# mpiexec –trace -n 2 -host michost./test_hello : 

-wdir /tmp -n 2 -host 172.31.1.1 

/tmp/test_hello.MIC

• Flag “-trace“ will implicitly pre-load libVT.so 
(which finally calls libmpi.so to execute the MPI call)

• Set VT_LOGFILE_FORMAT=stfsingle to create a single trace
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ITAC Compilation Support

• Compile and link with “–trace“ flag

# mpiicc -trace -o test_hello test.c

# mpiicc –trace –mmic -o test_hello.MIC test.c

– Linkage of libVT library

• Compile with –tcollect flag

# mpiicc –tcollect -o test_hello test.c

# mpiicc –tcollect –mmic -o test_hello.MIC test.c

– Linkage of libVT library

– Will do a full instrumentation of your code, i.e. All user functions will be 
visible in the trace file

– Maximal insight, but also maximal overhead

• Use the VT API of ITAC to manually instrument your code.

• Run as usual Intel® MPI program without “-trace“ flag

# mpiexec ...

30
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ITAC Analysis

• Start the ITAC analysis GUI with the trace file (or load it)

# traceanalyzer test_hello.single.stf

• Start the analysis, usually by inspection of the Flat Profile 
(default chart), the Event Timeline, and the Message Profile

– Select “Charts->Event Timeline”

– Select “Charts->Message Profile”

– Zoom into the Event Timeline

o Click into it, keep pressed, move to the right, and release the mouse

o See menu Navigate to get back

– Right click the “Group MPI->Ungroup MPI”.
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Full ITAC Functionality on Intel® Xeon Phi™
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Agenda

• Porting Checklist

• Performance Tuning Utilities

• Performance Tuning Hints

– High Threading And Vectorization are Key

– Extreme parallelization is required

– Thread optimization

– Maximize the vectorizer

– Architecture-specific hints

• Advanced Performance Tuning
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High Threading And Vectorization are Key

• Performance increasingly depends on both threading and 
vectorization

• Nothing new here: same qualities help host performance

34

Multi-threading

V
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sequential, 
no vectorization

multi-threaded,
no vectorization

sequential,
fully vectorized

multi-threaded,
vectorized
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Extreme Parallelization is required to 
utilize all the cores
• Use the appropriate threading model

– OpenMP*, Intel® Threading Building Blocks, Intel Cilk™ Plus, 
POSIX threads

• Avoid sequential code as much as possible

– “Single-threaded” code

– Avoid atomic operations (e.g. #pragma omp atomic)

– Avoid locking operations (e.g. #pragma omp critical)

– Avoid barriers (e.g. #pragma omp barrier)

• Fuse parallel loops where possible

– Manually by merging loop bodies

– Conceptually by using “nowait” for OpenMP worksharing constructs
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Thread Optimization is minimizing 
overhead and balancing loads
• Use one MPI rank per coprocessor core, OpenMP* 

within core

– OpenMP synchronization is faster within a core than across cores

• OMP_NUM_THREADS 

– Balance MPI and OMP thread parallelism for target

• #pragma omp for collapse (n)

– Increase thread-parallelism for utilization, load balance

• KMP_AFFINITY 

– Try balanced to avoid OS collision and avoid migration

36*Other names and brands may be claimed as the property of others
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Thread Optimization

• Correct affinity essential on Intel® Xeon Phi™ 
coprocessor

– 32 registers of 512 bits make up 2 KB of register file to swap in and 
out on context switches

– You want to keep threads on the same (logical) core!

• KMP_AFFINITY

– scatter distribute threads as far apart as possible

– compact keep threads close to each other

– balanced mix between scatter and compact

– proclist specify own set of cores to utilize

• Example:

– export MIC_KMP_AFFINITY=scatter

– export MIC_KMP_AFFINITY=explicit,proclist=[7,17,19],verbose
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Maximize the Vectorizer

• Unleash the vectorizer by providing context 
information

– #pragma ivdep, #pragma vector always

– Intel® Cilk Plus vectorization pragmas (#pragma simd)

– Intel Cilk Plus array notation (a[0:7] = b[1:7] * c[2:7])

– Avoid aliasing and let the compiler know it

o “restrict” keyword

o -ansi-alias 

o -fno-alias

o Use Fortran 
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Sample: simd Pragmas

39

float sprod(float *a, float *b, int n)

{

float sum = 0.0f;    

for (int k=0; k<n; k++)   

sum += a[k] * b[k];

return sum;

}

void sprod(float *a, float *b, int n)

{

float sum = 0.0f;

#pragma simd vectorlength(16) reduction(+:sum)

for (int k=0; k<n; k++)   

sum += a[k] * b[k];

return sum;

}
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Transformations – Enable Parallelism

• Loop interchange

– Better memory locality raises instruction- and pipeline-parallelism

• Enable vectorization

– Simplify reductions, especially when they appear inside a conditional

o Turn accumulator into a temp that's declared outside of the loop 

o Accumulate into that temp in the loop 

o Add that temp to the real accumulator outside the loop

– Avoid constructors in a loop, by extending scope of stack variables to 
outside a loop, and converting return values to structs

40*Other names and brands may be claimed as the property of others
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Loop Reordering Example

#include <stdio.h>

void mmul(double *a, int lda, double *b, int ldb, double *c, int ldc, int n)

{

/* &a(i,j) = a + lda * j + i */

for (int i = 0; i < n; ++i)

for (int j = 0; j < n; ++j)

for (int k = 0; k < n; ++k)

c[j * ldc + i] += a[k * lda + i] * b[j * ldb + k];

}

$ icc –mmic -vec-report3 serialmmul.cc

serialmmul.cc(7): (col. 10) remark: loop was not vectorized: existence of vector dependence.

serialmmul.cc(8): (col. 14) remark: vector dependence: assumed FLOW dependence between c line 

8 and b line 8.

serialmmul.cc(8): (col. 14) remark: vector dependence: assumed ANTI dependence between b line 

8 and c line 8.



serialmmul.cc(6): (col. 7) remark: loop was not vectorized: not inner loop.

41

Problem:  all iterations of inner loop (k) modify the same element of c, and 
there is no guarantee that a, b, and c do not point to the same memory –

classic data race

Line 6

Line 7

Line 8

k=1, k=2, ...
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Loop Reordering Example

#include <stdio.h>

void mmul(double *a, int lda, double *b, int ldb, double *c, int ldc, int n)

{

/* &a(i,j) = a + lda * j + i */

for (int j = 0; j < n; ++j)

for (int k = 0; k < n; ++k)

for (int i = 0; i < n; ++i)  // moved to inside loop from outside

c[j * ldc + i] += a[k * lda + i] * b[j * ldb + k];

}

$ icc –mmic -vec-report3 interchangemmul.cc

interchangemmul.cc(7): (col. 10) remark: LOOP WAS VECTORIZED.

interchangemmul.cc(7): (col. 10) remark: loop skipped: multiversioned.

interchangemmul.cc(6): (col. 7) remark: loop was not vectorized: not inner loop.

interchangemmul.cc(5): (col. 4) remark: loop was not vectorized: not inner loop.

42

Each iteration of inner loop (i) modifies a different element of c, and they are far 

apart.  This implementation looked promising enough for the compiler to go ahead 
and perform run-time data race checks between c[] and a[]/b[] (“multiversioned” –
one version for when c[] overlaps with a[]&b[], one when it does not).

Line 6

Line 7

Line 8
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Vectorization Reports - Getting Advice 
From 
–guide-vec$ icc –mmic -guide-vec=4 serialmmul.cc

GAP REPORT LOG OPENED ON Wed Mar 30 13:58:35 2011

remark #30761: Add -parallel option if you want the compiler to generate 

recommendations for improving auto-parallelization.

serialmmul.cc(7): remark #30536: (LOOP) Add -fargument-noalias option for better 

type-based disambiguation analysis by the compiler, if appropriate (the 

option will apply for the entire compilation). This will improve 

optimizations such as vectorization for the loop at line 7. [VERIFY] Make 

sure that the semantics of this option is obeyed for the entire compilation. 

[ALTERNATIVE] Another way to get the same effect is to add the "restrict" 

keyword to each pointer-typed formal parameter of the routine "mmul". This 

allows optimizations such as vectorization to be applied to the loop at line 

7. [VERIFY] Make sure that semantics of the "restrict" pointer qualifier is 

satisfied: in the routine, all data accessed through the pointer must not be 

accessed through any other pointer.

Number of advice-messages emitted for this compilation session: 1.

END OF GAP REPORT LOG

$
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Vectorization Reports - Success by Using 
Advice From –guide-vec

#include <stdio.h>

void mmul(double * restrict a, int lda, double * restrict b, int ldb, 

double * restrict c, int ldc, int n)

{

/* &a(i,j) = a + lda * j + i */

for (int i = 0; i < n; ++i)

for (int j = 0; j < n; ++j)

for (int k = 0; k < n; ++k)

c[j * ldc + i] += a[k * lda + i] * b[j * ldb + k];

}

$ icc -mmic -restrict -vec-report3 restructmmul.cc   

restructmmul.cc(5): (col. 4) remark: PERMUTED LOOP WAS VECTORIZED.

restructmmul.cc(7): (col. 10) remark: loop was not vectorized: not inner loop.

restructmmul.cc(6): (col. 7) remark: loop was not vectorized: not inner loop.

44

Compiler, realizing that a, b, and c point to different memory, decides it can 
safely reorder the loops in order to vectorize. Because of restrict, the 

compiler no longer emits a multiversioned loop. This helps lower code size and 
eliminates the overhead of run-time data race check

Line 5

Line 6

Line 7
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Loop and Memory Optimizations

• Loop trip counts

– Improves quality of compiler optimizations such as prefetching, 
vectorization

– Can use #pragma loop_count(n), or 

#pragma loop_count min(n),max(n),avg(n)

– Loop profiling not available on Intel® Xeon Phi™ architecture

• Page sizes

– Use libhugetlbfs to force use of 2M pages for non-offloaded data

– Use the environment variable MIC_USE_2MB_BUFFERS to force 
runtime to allocate offloaded data into 2MB pages

– Use mmap to selectively control size
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Alignment essential for vectorization
• Align the data AND tell the compiler

– In most cases, static compiler does not have the alignment information 
of references inside loops, so does extra work to cover misalignment

– Align the data using alignment attributes, using _mm_malloc, using 
Fortran option -align array64byte, etc.

– Tell compiler about alignment using a clause before the vector-loop 

o assume_aligned clause, vector aligned pragma, etc.

• Mechanisms
__declspace(align(64)) float array[SIZE];

#pragma vector aligned

__assume_aligned(p1,64);

__assume(n1%16==0);

void *__offload_myoSharedAlignedMalloc(size_t size, 

size_t alignment);

#pragma offload target(mic) align(64)
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Advice specific to Intel® Xeon Phi 
coprocessor
• Floating point

– Use single vs. double precision where possible

– Use various precision controls where applicable: -imf-*, -[no-]prov-*

– Rewrite “/const” as “*1/const”

• Signed vs. unsigned 32b integers

• Convert to using 32b vs. 64b ints wherever possible

– More elements per SIMD vector

– Enable vectorization for scatter/gather

– Enable vectorization for type conversion

• Avoid scatter/gather where possible

– Array of Structures to Structure of Arrays (AoS  SoA)

– Special-case code to cover unit stride if it’s a common occurrence
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Agenda

• Porting Checklist

• Performance Tuning Utilities

• Performance Tuning Hints

• Advanced Performance Tuning

– Think about what you expect to achieve

– Eviction control

– Inlining control
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Think about what you expect to achieve 
and then measure how close you come

• Algorithm

• Threading

• Vectorization and compute-bound limits

• Memory
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Algorithm

• Convince yourself that 

– the algorithm will thread-scale without serialization,

– is vectorizable, 

– and fits in memory

• Consider alternate algorithms that are more 
suitable
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Threading
• Degree of parallelism

– Assure that fraction of the app that’s parallel is very high

– Assure that the degree of thread parallelism is adequate

– Check for serialization, e.g. locks

• OpenMP overheads

– Look at VTune™ Amplifier time line for load balance

– Look at VTune Amplifier hot spots for overhead time in libiomp

• Tweak number of threads and thread affinity

– Find the best value of OMP_NUM_THREADS and KMP_AFFINITY 

– Try 2-3 threads per core

– Try KMP_AFFINITY=balanced,granularity=fine

• Threads per core hints (experimental)

– -mCG_lrb_num_threads={2,3,4} can bring 5-35% gains

– Name will change if/when made an official feature
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Vectorization and Compute-bound Limits

• Deep dive on reasons why hot loops don’t vectorize 
profitably 

– Look at messages, patterns, idioms

• Compare against compute-bound limit

• Check assembly code

– Compare path length and generated code with expectations

– Assure vectorization by checking for vector instructions

• Check degree of vectorization with PMU data

– % vector instructions: 
VPU_INSTRUCTIONS_EXECUTED/INSTRUCTIONS_EXECUTED

– Avg. % elements used per vector: 
VPU_ELEMENTS_ACTIVE/INSTRUCTIONS_EXECUTED
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Memory

• Check assembly for gathers/scatters, change data 
structures or code to avoid them

• Compare against bandwidth limit

• Check L2 and L1 cache miss ratios.  Loop 
interchange, tile and change data structures as 
necessary to increase locality.

• Check & tune prefetching, particularly for gathers 
and scatters

• Reason about what the best page size is: 4K or 2M.  
Use libhugetlbfs or mmap if appropriate.  Check 
TLB miss rates against expected access patterns.
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Eviction Control

• Streaming data trashes cache, doesn’t need residency

– Mark with #pragma vector nontemporal

– clevict can be used to evict cache lines sooner and at a higher rate 
than HW can

– Intel® Xeon® processor: MOVNTQ

– Intel Xeon Phi™ coprocessor: clevict0, clevict1

• -mGLOB_default_function_attrs=”clevict_level=N”

where N = 0, 1, 2 or 3 (default is 3 on Intel® Xeon Phi™ Architecture)

0 - do not generate clevict

1 - generate clevict0, from L1

2 - generate clevict1, from L2

3 - generate L1 and L2 clevict
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Inlining Control - Pragmas

• Statement-specific inline pragmas

– #pragma inline [recursive] – hint, subject to heuristics

– #pragma forceinline [recursive] – dictate, whenever possible

– #pragma noinline – dictate

– When placed before a C/C++ statement, applies to all calls and 
statements nested within that statement

– There are corresponding directives for Fortran
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Inlining Controls – Compiler Switches

-[no-]inline-factor=n,

– Specifies % multiplier that should be applied to the following inlining
options that define upper limits, i.e. n=200 means multiply upper 
limits by 2

o -[no-]inline-min-size=n

o -[no-]inline-max-size=n

o -inline-max-per-routine=n

o -inline-max-per-compile=n

-inline-forceinline

– Specifies that an inlined routine should be inlined whenever the 
compiler can do so

56



Optimization Strategies

Software & Services Group, Developer Products Division

Copyright© 2013, Intel Corporation. All rights reserved. Optimization 
Notice

Questions?
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