
Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

What will be new in OpenMP 4.0?

Dr.-Ing. Michael Klemm
Software and Services Group

Intel Corporation
(michael.klemm@intel.com)

1

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Legal Disclaimer & Optimization Notice
INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS
OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Performance tests and ratings are measured using specific computer systems and/or components
and reflect the approximate performance of Intel products as measured by those tests. Any
difference in system hardware or software design or configuration may affect actual performance.
Buyers should consult other sources of information to evaluate the performance of systems or
components they are considering purchasing. For more information on performance tests and on
the performance of Intel products, reference www.intel.com/software/products.

Copyright © 2013, Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Core, Phi,
VTune, and Cilk are trademarks of Intel Corporation in the U.S. and other countries. *Other names
and brands may be claimed as the property of others.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for
Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information
regarding the specific instruction sets covered by this notice.

Notice revision #20110804

2

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Agenda

• User-defined Reductions

• Support for SIMD Parallelism

• Task Extensions

• Support for Accelerators and Coprocessors

• Thread-affinity Support

3

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Agenda

• User-defined Reductions

• Support for SIMD Parallelism

• Task Extensions

• Support for Accelerators and Coprocessors

• Thread-affinity Support

4

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

User-defined reductions: Motivation

• Allows to extend what types and operations are allowed in an
OpenMP reduction clause:

struct point {

int x;

int y;

};

struct point points[N];

struct point min = { MAX_INT, MAX_INT }, max = {0,0};

#pragma omp parallel for reduction(….)

for (int i = 0; i < N; i++)

{

if (point[i].x < min.x) min.x = point[i].x;

if (point[i].y < min.y) min.y = point[i].y;

if (point[i].x > max.x) max.x = point[i].x;

if (point[i].y > max.y) max.y = point[i].y;

}

5

Not possible
before 4.0

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

User-defined reductions: declaration

• New declarative directive

#pragma omp declare reduction(reduction-identifier : typename-list : combiner)
[initializer-clause]

!$omp declare reduction(reduction-identifier : type-list : combiner) [initializer-clause]

• reduction-identifier is the “operator” name given to this reduction

• combiner specifies how to combine two elements of one the specified
types

– Only two special variables can be used:
o omp_in

o omp_out

– In C/C++, an expression

– In Fortran, either an assignment statement or subroutine name with its
arguments
o no CALL keyword

6

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

User-defined reductions: declaration

• initializer-clause

– Specifies how to initialize the private elements of each thread

– Special variable omp_priv represents the private element

– Optional special variable omp_orig represents the original
variable

– No other variable is allowed

– If not specified, a default “zero-value” is used

7

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

User-defined reductions: example

struct point {

int x;

int y;

};

#pragma omp declare reduction(min : struct point : \

omp_out.x = omp_in.x > omp_out.x ? omp_out.x : omp_in.x, \

omp_out.y = omp_in.y > omp_out.y ? omp_out.y : omp_in.y) \

initializer(omp_priv = { MAX_INT, MAX_INT })

#pragma omp declare reduction(max : struct point : \

omp_out.x = omp_in.x < omp_out.x ? omp_out.x : omp_in.x, \

omp_out.y = omp_in.y < omp_out.y ? omp_out.y : omp_in.y) \

initializer(omp_priv = { 0,0 })

struct point points[N];

struct point minp = { MAX_INT, MAX_INT }, maxp = {0,0};

#pragma omp parallel for reduction(min:minp) reduction(max:maxp)

for (int i = 0; i < N; i++)

{

if (point[i].x < minp.x) minp.x = point[i].x;

if (point[i].y < minp.y) minp.y = point[i].y;

if (point[i].x > maxp.x) maxp.x = point[i].x;

if (point[i].y > maxp.y) maxp.y = point[i].y;

}

8

Not really necessary

Used here as a
regular reduction

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

User-defined reductions: omp_orig

• Allows initial value to depend on the original list item

class V {

float *p;

int n;

public:

V(int _n) : n(_n) { p = new[n] float(); }

V(const Z & m) : n (m.n) { p = new[n] float(); }

~V() { delete[] p; }

V& operator+= (const V &);

#pragma omp declare reduction(+ : V : omp_out += omp_in) \

initializer(omp_priv(omp_orig))

};

9

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

User-defined reductions: other rules

• UDRs have scope

– can’t be redeclared in the same scope

o except identical declarations

– reduction clause allows reduction operators to be qualified

o to specify a class, namespace, …

• UDRs follow base language access rules

– e.g., private UDRs can only be called from within class methods

• UDRs are inherited

– the reduction operator in reduction clauses with variables of
derived classes

10

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Some C++ examples

#pragma omp declare reduction(+ : std::vector<int> : \

std::transform (omp_out.begin(), omp_out.end(), \

omp_in.begin(), omp_in.begin(),plus<int>()))

#pragma omp declare reduction(merge : std::vector<int> : \

omp_out.insert(omp_out.end(), omp_in.begin(), omp_in.end())

#pragma omp declare reduction(merge : std::list<int> : \

omp_out.merge(omp_in))

11

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Agenda

• User-defined Reductions

• Support for SIMD Parallelism

• Task Extensions

• Support for Accelerators and Coprocessors

• Thread-affinity Support

12

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

SIMD Support: motivation

• Provides a portable high-level mechanism to specify SIMD
parallelism

– Heavily based on Intel’s SIMD directive

• Two main new directives

– To SIMDize loops

– To create SIMD functions

13

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

SIMD loops: syntax

#pragma omp simd [clauses]

for-loop

!$omp simd [clauses]

do-loops

[!$omp end simd]

• Loop has to be in “Canonical loop form”

– as do/for worksharing

14

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

SIMD loop clauses

• safelen (length)

– Maximum number of iterations that can run concurrently without
breaking a dependence

o in practice, maximum vector length

• linear (list[:linear-step])

– The variable value is in relationship with the iteration number

o xi = xorig + i * linear-step

• aligned (list[:alignment])

– Specifies that the list items have a given alignment

– Default is alignment for the architecture

• private (list)

• lastprivate (list)

• reduction (operator:list)

• collapse (n)

15

Same as existing
clauses

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

SIMD loop example

double pi()

{

double pi = 0.0;

double t;

#pragma omp simd private(t) reduction(+:pi)

for (i=0; i<count; i++) {

t = (double)((i+0.5)/count);

pi += 4.0/(1.0+t*t);

}

pi /= count

return pi;

}

16

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

SIMD functions: Syntax

#pragma omp declare simd [clauses]

[#pragma omp declare simd [clauses]]

function definition or declaration

!$omp declare simd (function-or-procedure-name) [clauses]

• Instructs the compiler to

– generate a SIMD-enabled version(s) of a given function

– that a SIMD-enabled version of the function is available to use
from a SIMD loop

17

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

SIMD functions: clauses

• simdlen(length)

– generate function to support a given vector length

• uniform(argument-list)

– argument has a constant value between the iterations of a given
loop

• inbranch

– function always called from inside an if statement

• notinbranch

– function never called from inside an if statement

• linear(argument-list[:linear-step])

• aligned(argument-list[:alignment])

• reduction(operator:list)

18

Same as before

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

SIMD combined constructs

• Worksharing + SIMD

#pragma omp for simd [clauses]

!$omp do simd [clauses]

[!$omp end do simd]

– First vectorize the loop, then distribute the resulting iterations
among threads

• Parallel + worksharing + SIMD

#pragma omp parallel for simd [clause[[,] clause] ...]

!$omp parallel do simd [clause[[,] clause] ...]

!$omp end parallel do simd

19

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

SIMD functions example

#pragma omp simd notinbranch

float min(float a, float b) {

return a < b ? a : b;

}

#pragma omp simd notinbrach

float distsq(float x, float y) {

return (x - y) * (x - y);

}

#pragma omp parallel for simd

for (i=0; i<N; i++)

d[i] = min(distsq(a[i], b[i]), c[i]);

20

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Agenda

• User-defined Reductions

• Support for SIMD Parallelism

• Task Extensions

• Support for Accelerators and Coprocessors

• Thread-affinity Support

21

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Taskgroup

• Allows to logically group tasks together for

– Synchronization

– Cancellation

• Solves long standing complain of not being able to wait for a
task nest

22

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Taskgroup syntax

#pragma omp taskgroup

structured-block

!$omp taskgroup

structured-block

!$omp end taskgroup

• Implies a wait at the end of the region on

– all child tasks created in the taskgroup

– their descendants

23

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Taskgroup vs Taskwait

#pragma omp task {} // T1

#pragma omp task // T2

{

#pragma omp task {} // T3

}

#pragma omp task {} // T4

#pragma omp taskwait

24

Only T1, T2 & T4 are guaranteed
to have finished here

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Taskgroup semantics

#pragma omp task {} // T1

#pragma omp taskgroup

{

#pragma omp task // T2

{

#pragma omp task {} // T3

}

#pragma omp task {} // T4

}

25

Only T2, T3 & T4 are guaranteed
to have finished here

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Taskgroup example

int count;

void count_tree(node * n) {

#pragma omp atomic

count++;

if (n->left)

#pragma omp task

count_tree(n->left);

if (n -> right)

#pragma omp task

count_tree(n->right);

}

node * root = generate_tree();

#pragma omp parallel sections

{

#pragma omp taskgroup

count_tree(root);

printf(“Total count: %d\n”,count);

}

26

All tasks finished
before here

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Taskgroup example

int count;

void count_tree(node * n) {

#pragma omp atomic

count++;

if (n->left)

#pragma omp task

count_tree(n->left);

if (n -> right)

#pragma omp task

count_tree(n->right);

}

node * root = generate_tree();

#pragma omp parallel sections

{

#pragma omp taskgroup

count_tree(root);

printf(“Total count: %d\n”,count);

}

27

Horrible horrible way to do this!
This is just for simplicity.

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Task Dependencies: Motivation

• Allows a more unstructured way of expressing task parallelism

• Pontentially allows to remove more expensive
synchronizations

– and have more work “in-flight”

– no end of the loop synchronizations

• Several research projects have used successfully to improve
linear algebra algorithms for large core counts

28

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Task Dependencies: Syntax

• New clause to task construct:

depend(dependence-type : list)

• dependence-type being one of:

– in

– out/inout

• Dependences are constructed in serial order based on the
specified data relationships

– in waits for previous out

– out/inout wait for previous out/inout and all previous in

– no real constraint on what the task does

– only between sibling tasks

29

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Task Dependencies

int a;

int &b = a;

#pragma omp task depend(in:a) {} // T1

#pragma omp task depend(out:b) {} // T2

#pragma omp task depend(in:a) {} // T3

#pragma omp task depend(in:b) {} // T4

#pragma omp task depend(inout:a) {} // T5

#pragma omp task depend(in:a) {} // T6

30

T1

T2

T3
T4

T5

T6

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Task dependencies

int a;

int &b = a;

#pragma omp task depend(in:a) {} // T1

#pragma omp task depend(out:b) {} // T2

#pragma omp task depend(in:a) {} // T3

#pragma omp task depend(in:b) {} // T4

#pragma omp task depend(inout:a) {} // T5

#pragma omp task depend(in:a) {} // T6

31

T1

T2

T3
T4

T5

T6

Impossible to build back arches
and have deadlocks

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Array sections

• OpenMP extends array subscript notation in C/C++ to allow
array sections

– [lower bound : length]

o specifies a section of length elements starting at lower bound

– if no lower bound is specified defaults to zero

– if no length is specified defaults to the remaining elements of that
dimension for the array

o only can be omitted if the size of the dimension is known

int a[10], *b;

a[:] //legal

b[:] // illegal

32

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Array sections

• Array sections can be used only in

– The depend clause of the task construct

o Sections cannot partially overlap

– The map clause from the target and target data constructs

– Other clauses may allow them in the future

o probably not in the 4.0 timeframe

33

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Task dependencies

void blocked_cholesky(int NB, float A[NB][NB]) {

int i, j, k;

for (k=0; k<NB; k++) {

#pragma omp task depend(inout:A[k][k])

spotrf (A[k][k]) ;

for (i=k+1; i<NT; i++)

#pragma omp task depend(in:A[k][k]) depend(inout:A[k][i])

strsm (A[k][k], A[k][i]);

// update trailing submatrix

for (i=k+1; i<NT; i++) {

for (j=k+1; j<i; j++)

#pragma omp task depend(in:A[k][i],A[k][j]) depend(inout:A[j][i])

sgemm(A[k][i], A[k][j], A[j][i]);

#pragma omp task depend(in:A[k][i]) depend(inout:A[i][i])

ssyrk (A[k][i], A[i][i]);

}

}

}

* image from BSC

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Agenda

• User-defined Reductions

• Support for SIMD Parallelism

• Task Extensions

• Support for Accelerators and Coprocessors

• Thread-affinity Support

35

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Device Model

• OpenMP 4 will support accelerators and coprocessors

• Device model:

– One host

– Multiple accelerators/coprocessors of the same kind

36

Host
Coprocessors

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Terminology

• Device:
an implementation-defined (logical) execution unit

• League:
the set of threads teams created by a teams construct

• Contention group:
threads of a team in a league and their descendant threads

• Device data environment:
Data environment as defined by target data or target
constructs

• Mapped variable:
An original variable in a (host) data environment with a
corresponding variable in a device data environment

• Mapable type:
A type that is amenable for mapped variables.

37

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

target declare Clauses

• C/C++

#pragma omp declare target new-line

[function-definition-or-declaration]

#pragma omp end declare target new-line

• Fortran

!$omp declare target [(proc-name-list | list)] new-line

39

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

target Clauses

#pragma omp target [clause[[,] clause],...] new-line
structured-block

Clauses: device(scalar-integer-expression)

map(alloc | to | from | tofrom: list)
if(scalar-expr)

#pragma omp target data [clause[[,] clause],...] new-line
structured-block

Clauses: device(scalar-integer-expression)

map(alloc | to | from | tofrom: list)
if(scalar-expr)

#pragma omp target update [clause[[,] clause],...] new-line

Clauses: to(list)
from(list)
device(integer-expression)
if(scalar-expression)

40

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

OpenMP* Data Environment Examples

41

#pragma omp target map(to:b[0:count])) map(to:c,d) map(from:a[0:count])

{

#pragma omp parallel for

for (i=0; i<count; i++) {

a[i] = b[i] * c + d;

}

}

#pragma omp target data device(0) map(alloc:tmp[0:N]) map(to:input[:N)) map(from:result)

{

#pragma omp target device(0)

#pragma omp parallel for

for (i=0; i<N; i++)

tmp[i] = some_computation(input[i], i);

do_some_other_stuff_on_host();

#pragma omp target device(0)

#pragma omp parallel for reduction(+:result)

for (i=0; i<N; i++)

result += final_computation(tmp[i], i)

}

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Execution Model

• The target construct transfers the control flow to the target device

– The transfer clauses control direction of data flow

– Array notation is used to describe array length

• The target data construct creates a scoped device data environment

– The transfer clauses control direction of data flow

– Device data environment is valid through the lifetime of the target data region

• Use target update to request data transfers from within a target data
region

42

Host Device

#pragma target …
{...}

alloc(…)
1

from(…)

4

to(…)
2

pA

3

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

team Constructs

#pragma omp team [clause[[,] clause],...] new-line

structured-block

Clauses: num_teams(integer-expression)
num_threads(integer-expression)
default(shared | none)
private(list)
firstprivate(list)
shared(list)
reduction(operator : list)

• If specified, a teams construct must be contained within a target construct.
That target construct must contain no statements or directives outside of
the teams construct.

• distribute, parallel, parallel loop, parallel sections, and parallel
workshare are the only OpenMP constructs that can be closely nested in the
teams region.

44

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Distribute Constructs

#pragma omp distribute [clause[[,] clause],...] new-line

for-loops
Clauses: private(list)

firstprivate(list)
collapse(n)
dist_schedule(kind[, chunk_size])

• A distribute construct must be closely nested in a teams region.

46

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Examples

48

#pragma omp target device(0)

#pragma omp teams num_teams(60) num_threads(4) // 60 physical cores, 4 h/w threads each

{

#pragma omp distribute // this loop is distributed across teams

for (int i = 0; i < 2048; i++) {

#pragma omp parallel for // loop is executed in parallel by all threads (4) of the team

for (int j = 0; j < 512; j++) {

#pragma omp simd // create SIMD vectors for the machine

for (int k=0; k<32; k++) {

foo(i,j,k);

}

}

}

}

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Execution Environment Routines and ENV

• void omp_set_default_device(int device_num)

• int omp_get_default_device(void)

• int omp_get_num_devices(void);

• int omp_get_num_teams(void)

• int omp_get_team_num(void);

• OMP_DEFAULT_DEVICE ENV Variable

– The OMP_DEFAULT_DEVICE environment variable sets the
device number to use in target constructs by setting the initial
value of the default-device-var ICV.

– The value of this environment variable must be a non-negative
integer value.

49

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Agenda

• User-defined Reductions

• Support for SIMD Parallelism

• Task Extensions

• Support for Accelerators and Coprocessors

• Thread-affinity Support

50

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

OpenMP Affinity

• OpenMP 3.1 introduced a thread binding interface

• OpenMP 4 extends the interface to allow for full thread affinity

– Vendor-agnostic affinity settings (e.g. no more KMP_AFFINITY)

– Easier interaction between environment and OpenMP runtime

• Terminology:

– Place: unordered set of processors

– Place list: ordered list of available places for execution

– Place partition: Contiguous interval in the place list

• Policies / affinity types:

– Master: keep worker threads in the same place partition as the
master thread

– Close: keep worker threads “close” to the master thread in
contiguous place partitions

– Spread: create a sparse distribution of worker threads across the
place partitions

51

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

OpenMP Affinity

• Additional clause for parallel regions: proc_bind(affinity-type)

• Environment variables control the affinity settings:

– OMP_PROC_BIND
e.g., export OMP_PROC_BIND=“spread,spread,close”

– OMP_PLACES
e.g., export OMP_PLACES=“{0,1,2,3},{4,5,6,7},{8:4},{12:4}”

• Places are system-specific and are not defined by OpenMP

52

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.
53

 For best data locality

– select OpenMP threads in the same place as the master

 Examples

– master 2*

– master 4

– master 8

Examples: master

p0 p1 p2 p3 p4 p5 p6 p7

p0 p1 p2 p3 p4 p5 p6 p7

p0 p1 p2 p3 p4 p5 p6 p7

master worker partition

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.
54

 For data locality, load-balancing, and more dedicated-
resources

– select OpenMP threads near the place of the master

– wrap around once each place has received one OpenMP thread

 Examples

– close 2*

– close 4

– close 8

Example: close

p0 p1 p2 p3 p4 p5 p6 p7

p0 p1 p2 p3 p4 p5 p6 p7

p0 p1 p2 p3 p4 p5 p6 p7

master worker partition

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

master worker partition

55

 For load balancing, most dedicated hardware resources

– spread OpenMP threads as evenly as possible among places

– create sub-partition of the place list

o subsequent threads will only be allocated within sub-partition

 Examples

– spread 2*

– spread 4

– spread 8

– spread 16

Example: spread

p0 p1 p2 p3 p4 p5 p6 p7

p0 p1 p2 p3 p4 p5 p6 p7

p0 p1 p2 p3 p4 p5 p6 p7

p0 p1 p2 p3 p4 p5 p6 p7

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Questions?

56

Software & Services Group, Developer Relations Division

Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. 57

