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1) Scattering in dielectric resonators (TM)

Objective: Accurate computation of resonances in nano structures.
Specifically, we study light confinement in prism-scatterers with arbitrarily
shaped faces. Applications: design optimization of sensors, optical filters.

Model:
• Maxwell equations in Fourier space ∂t → −iω with k 2 = ε0µ0ω

2

• Infinitely long dielectric (∂z → 0) in exterior domain
• TM-polarization E = [0, 0, u(x, y)], Hz = 0. We reduce to 2D, where
u satisfies: L(k) u := ∆u + k 2n2(r, k)u = 0

• n(r, k) : refractive index,
where n , 1, for r ∈ Ωs (dielectric)

• Scattering problem: ks ∈ R and ui

are given, then we solve for outgoing
solutions uout of L(ks) u = 0

z

uin = e iksx

n(k)

n = 1

3) Motivation: Energy peaks

• Incident plane waves with wave number
ks ∈R excite amplitude peaks.

• Finding ks by frequency sweeps is
generally computationally expensive.

• Resonator’s quality factor:

Qm =
<{km}

2|={km}|

• Peaks and resonances km are related
by the scattering problem through Qm:

Take ks = <{km} provided Qm is large.
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Scattering
example

km = 7.109−0.0018i
h = 0.005
ks = 7.109

ks − h ks ks + h

5) Modeling exterior domains: Dirichlet-to-Neumann map

• Introduce an outer circle Γa with radius r = a containing the scatterer
Ωs and use the exact series for outgoing waves in r ∈ Ω+ ≡ R

2
\ Ωa

∆u + k 2n2(k , r)u = 0, r ∈ Ωa

∇u · n = Gu, r ∈ Γa (DtN map)

Gu ≡ −
∂u+

∂r

∣∣∣∣∣∣
r=a

= −
1

2π

∞∑
m=−∞

k
H′m(ka)

Hm(ka)
e imθ

∫ 2π

0
u(a, θ′) e−imθ′dθ′

• Truncate the series until |m| = l, with l > a<{k }

•Weak form: Find eigenpairs (u, k) such that: (nonlinear in k )

(∇u,∇v̄)Ωa − k 2(n2(k , r)u, v̄)Ωa + (G l(k)u, v̄)Γa = 0, u, v ∈ H1(Ωa)

• Nonlinear eigenvalue problem, solver: NEPCISS in SLEPc-3.6.0.

7) Resonances of arbitrarily shaped scatterers

• We use curved elements (Manifolds in Deal.II library) and polynomial order p =20

2) Problem description and challenges

• A resonance state is a long-lived state of an open system and can be
determined by applying a DtN-map formulation or by a perfectly matched
layer (PML) to L(k) u =0; resonances km ∈ C.

• Solutions um < L2(R2) grow as e |={km}|d, with d the distance from Ωs.
This makes the um difficult to compute by any discretization method.

• Sectors in the k -plane may have large resolvent norms, which results in
spurious solutions for poor discretizations (spectral pollution).
Example: allowing large air regions in the computational domain.

• Identifying spurious solutions is an unsolved problem.

•We discretize by using FEM with high polynomial degree. We use
Gauss-Lobatto shape functions and curvilinear elements in deal.II.

4) Modeling exterior domains: Radial PML

• Coordinate stretching ∇ · (A∇u) + k 2n2B u = 0, r ∈ Ωd

u = 0, r ∈ Γdwith definitions α := 1 + iσ(r),

A(r) =

 α̃α cos2 θ + α
α̃

sin2 θ
(
α̃
α−

α
α̃

)
sin θ cos θ(

α̃
α−

α
α̃

)
sin θ cos θ α̃

α sin2 θ + α
α̃

cos2 θ

 , B(r) = αα̃

•Weak form: Find eigenpairs (u, k 2) s.t:

(A∇u,∇v̄)Ωd − k 2(n2(k , r)Bu, v̄)Ωd = 0; u, v ∈ H1
0
(Ωd)

• A is the identity in air/scatterer, and has diagonal form for r > r2

• Parameters: domain’s truncation d and strenght σ0

• Generalized linear eigenvalue problem for n(k , r) ≡ n(r) and λ ≡ k 2

• Solver: EPSKRYLOVSCHUR in SLEPc.

6) Convergence and comparison
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• In a) we show examples of spectral pollution from PML computations. It
is evident that improving the mesh quality (increasing the polynomial
degree p) moves spurious eigenvalues away from the area of interest.

• In b) we show relative errors for the 3rd eigenvalue in the PML 1D case.
The simplicity of the problem allow us to study convergence for
i) hFEM: where we keep p fixed and decrease the mesh size h, and
ii) pFEM: where h is fixed and we increase p. In i) we obtain h2p

convergence, where in ii) we obtain exponential convergence.

• In c) we show relative errors for the 2D disk computed with the DtN
method and l = 30 (truncation index) for selected eigenvalues. We used
the nonlinear eigenvalue solver NEPCISS in SLEPc.

8) PML vs DtN for linear materials: n(r, k) ≡ n(r)

PML: + Linear eigenvalue problem.
+ Easy to implement.
− Nonphysical eigenvalues satisfy the PML PDE.
− Resonances with small |<{k } | require large σ0, more dofs!
− Parameters σ0 and d are not straight forward to control.
− Requires extra cells/dofs for the PML layer.
− Spurious eigenvalues appear for poor discretizations.

DtN: + Exact boundary condition, only resonances are eigenvalues.
+ The only parameter is l (truncation of the series).
+ Only physical cells are required (fewer dofs).
− Resonance problem: nonlinear eigenvalue problem (quadratic in 1D).
− Implementation requires keeping 2l + 1 DtN dense boundary matrices.
− Spurious eigenvalues appear for poor discretizations.

• Spectral pollution can be diminished by using finer discretizations.
• Eigenvalue computation of non-self adjoint operators is a challenging task.


