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1) Scattering in dielectric resonators (TM) 2) Problem description and challenges
Objective: Accurate computation of resonances in nano structures. e A resonance state is a long-lived state of an open system and can be
Specifically, we study light confinement in prism-scatterers with arbitrarily determined by applying a DtN-map formulation or by a perfectly matched
shaped faces. Applications: design optimization of sensors, optical filters. layer (PML) to £(k) u=0; resonances kp, € C.
Model: e Solutions up, ¢ L2(R?) grow as e/™*m9_ with d the distance from Q.

o Maxwell equations in Fourier space 0; = —iw with k? = gouow?

e Infinitely long dielectric (9; — 0) in exterior domain

This makes the up, difficult to compute by any discretization method.

e Sectors in the k-plane may have large resolvent norms, which results in

e TM-polarization E = [0, 0, u(x, y)], H, = 0. We reduce to 2D, where spurious solutions for poor discretizations (spectral pollution).
u satisfies: L(k) u := Au + k?n*(r,k)u =0 Example: allowing large air regions in the computational domain.
: : in _ Aaiksx

e n(r, k) : refractive index, uw==e e Identifying spurious solutions is an unsolved problem.

where n # 1, for r € 25 (dielectric) $ é $ $ é $ $ § $ é _ _ _ L _
| e We discretize by using FEM with high polynomial degree. We use

e Scattering problem: ks € R and U’ > Gauss-Lobatto shape functions and curvilinear elements in deal.ll.
are given, then we solve for outgoing ‘ n(k)
solutions u°“! of £(ks) u = 0 I 4) Modeling exterior domains: Radial PML

3) Motivation: Energy peaks e Coordinate stretching V * (AVU) + k’n*Bu =0, re Qq
u=0, rely

with definitions @ := 1 4+ io(r),

e Incident plane waves with wave number
ks € R excite amplitude peaks.

Qa 2 A mZenl a o g
~COS H+gsm 0 (5—5)sm0coso
(2—%) sinfcosd 2sin’0 + 2 cos? ¢

@ o (04

A(r) = ( ] B(r) = ai

e Finding ks by frequency sweeps is
generally computationally expensive.

e Weak form: Find eigenpairs (u, k?) s.t:

e Resonator’s quality factor: — _ _
QK{km}O| ! = w & (AVuU, VV)q, — k*(n*(k,r)Bu,V)o, = 0; u,v € H)(Qq)
= =
Orm 2|3 {k)| v e ffﬁ“;i o A is the identity in air/scatterer, and has diagonal form for r > r»
e Peaks and resonances k., are related O * e Parameters: domain’s truncation d and strenght o7
by the scattering problem through Qp: N e R e Generalized linear eigenvalue problem for n(k,r) = n(r) and A = k?
. . B I T e Solver: EPSKRYLOVSCHUR in SLEPc.
Take ks = R{k,} provided Qp, is large. e 25 2% %%
5 S | 6) Convergence and comparison
ks
Scatterlng a) PML FEM Specrlpoltion 2b) C) e
example AR L D | \ 2 —1.977-0.279i
R R AN A OO R " ——2.384-0.122i
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e Introduce an outer circle I'; with radius r = a containing the scatterer e In a) we show examples of spectral pollution from PML computations. It
Q. and use the exact series for outgoing waves inr € Q1 = R? \ Q, IS evident that improving the mesh quality (increasing the polynomial
Au + k2n?(k,r)u = 0, reQ, degree p) moves spurious eigenvalues away from the area of interest.
Vu-n=4¢gu, rel,; (DtNmap) e In b) we show relative errors for the 3™ eigenvalue in the PML 1D case.
H (K , The simplicity of the problem allow us to study convergence for
0 T . : :
Gu = — out _ _l K m(ka) oim? f u(a, o) e—m’ 4o’ i) hFEM: where we keep p fixed and decrease the mesh size h, and
or |,—, 2 “~—~  Hpn(ka) 0 ’ i) pPFEM: where h is fixed and we increase p. In i) we obtain h?P

convergence, where in ji) we obtain exponential convergence.

T te th | til jm] = I, with I > a’R{k . . .
* Iruncate the series until |ml W Rik) e In c) we show relative errors for the 2D disk computed with the DtN

e Weak form: Find eigenpairs (u, k) such that: (nonlinear in k) method and I = 30 (truncation index) for selected eigenvalues. We used
(Vu,Vv)q, — k*(n®(k,r)u, V)q, + (G'(K)u,V)r, =0, u,v e H'(Q,) the nonlinear eigenvalue solver NEPCISS in SLEPc.
e Nonlinear eigenvalue problem, solver: NEPCISS in SLEPc-3.6.0. 8) PML vs DtN for linear materials: n(r, k) = n(r)

7) Resonances of arbitrarily shaped scatterers PML

. + Linear eigenvalue problem.

-+ Easy to implement.

— Nonphysical eigenvalues satisfy the PML PDE.

— Resonances with small |'R{k} | require large oy, more dofs!
— Parameters o¢ and d are not straight forward to control.

— Requires extra cells/dofs for the PML layer.

— Spurious eigenvalues appear for poor discretizations.
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DtN: <+ Exact boundary condition, only resonances are eigenvalues.

-+ The only parameter is I (truncation of the series).

-+ Only physical cells are required (fewer dofs).

— Resonance problem: nonlinear eigenvalue problem (quadratic in 1D).
— Implementation requires keeping 21 + 1 DtN dense boundary matrices.

— Spurious eigenvalues appear for poor discretizations.
e Spectral pollution can be diminished by using finer discretizations.

® \We use curved elements (Manifolds in Deal.ll library) and polynomial order p =20 e Eigenvalue computation of non-self adjoint operators is a challenging task.




