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2-D Incompressible Vorticity Equation

Continuous model:

∂ζ

∂t
+ v · ∇ζ = 0

∇ · v = 0
where v = (u, v) =

(
∂ψ

∂y
,−∂ψ

∂x

)
(1)

ζ is the vorticity and ψ the streamfunction of 2-D incompressible flow
In this setting (1) is equivalent to the non-linear system:

ζ = ∆ψ

∂ζ

∂t
+ J(ψ, ζ) = 0

Jacobian Differential Operator: J(a, b) =
∂a

∂x

∂b

∂y
− ∂a

∂y

∂b

∂x



Analytical Properties of the Jacobian Operator

Lemma

Jacobian operator is skew-symmetric by definition: J(a, b) = −J(b, a)

Integral constraints following by Integration by parts

J(a, b) = aJ(a, b) = bJ(a, b) = 0, (2)

where f = 1
|Ω|
∫

Ω f dxdy, a and b are periodic functions over Ω

Enstrophy Conservation:

1

2

∂ζ2

∂t
= ζJ(ψ, ζ) = 0

Kinetic Energy Conservation:

∂

∂t

(
1

2
∇ψ
)2

= ψ
∂ζ

∂t
= ψJ(ψ, ζ) = 0



The Arakawa’s approach using Jacobian formulation

Arakawa (1966):
“[...] if we can find a finite difference scheme which has constraints
analogous to the integral constraints of the differential form, the solution
will not show the false ”noodling“ following by computational instability”

defining a linear combination of three different consistent Jacobians,
Arakawa proved the result for second order central finite difference
scheme and periodic problems



The new generation of the Arakawa’s approach

1 We replicate the same result of Arakawa for periodic problems using
arbitrary high order Summation-By-Parts (SBP) approximations

2 We extend the work to completely general problems imposing
well-posed boundary conditions weakly with
Simultaneous-Approximation-Term (SAT) technique
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SBP semi-discretization of partial derivatives
SBP operators: fx ,y ≈ Dx ,y f = P−1

x ,yQx ,y f in 1D
Px ,y > 0 diagonal matrices s.t. they defines a quadrature rule
Qx ,y are periodic operators satisfying Qx ,y + QT

x ,y = 0

∂x f = (P−1
x Qx ⊗ Iy )f = diag((P−1

x Qx ⊗ Iy )f)1

∂y f = (Ix ⊗ P−1
y Qy )f = diag((Ix ⊗ P−1

y Qy )f)1

Computational 2-D grid:

{
xi , i ∈ 0, 1, 2, ...,N
yj , j ∈ 0, 1, 2, ...,M

f = (f11, ..., f1M , f21..., f2M , ..., fN1, ..., fNM) vector of dim NM

⊗ is the Kronecker product of two matrices

diag(a) =


a1 0 0 ... 0
0 a2 0 ... 0
...

...
...

0 0 ... 0 aN

 and 1 = (1, · · · , 1)T
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High order minetic SBP semi-discretization

Consider three consistent Jacobian discretizations:

J1 =

(
∂ψ

∂x

∂ζ

∂y
− ∂ψ

∂y

∂ζ

∂x

)
≈

{[
diag((P−1

x Qx ⊗ Iy )ψ)diag((Ix ⊗ P−1
y Qy )ζ)

]
1

−
[
diag((Ix ⊗ P−1

y Qy )ψ)diag((P−1
x Qx ⊗ Iy )ζ)

]
1
}

J2 =

(
∂

∂x

(
ψ
∂ζ

∂y

)
− ∂

∂y

(
ψ
∂ζ

∂x

))
≈

{
(P−1

x Qx ⊗ Iy )
[
diag(ψ)diag((Ix ⊗ P−1

y Qy )ζ)
]

1

− (Ix ⊗ P−1
y Qy )

[
diag(ψ)diag((P−1

x Qx ⊗ Iy )ζ)
]

1
} (3)

J3 =

(
− ∂

∂x

(
ζ
∂ψ

∂y

)
+

∂

∂y

(
ζ
∂ψ

∂x

))
≈

{
−(Ix ⊗ P−1

y Qy )
[
diag(ζ)diag((P−1

x Qx ⊗ Iy )ψ)
]

1

+ (P−1
x Qx ⊗ Iy )

[
diag(ζ)diag((Ix ⊗ P−1

y Qy )ψ)
]

1
}
.

(4)

Note that the continuous J1, J2, J3 are equivalent expressions



High order minetic SBP semi-discretization
The discrete J1, J2, J3 have different properties:

J1 is skew-symmetric
J2 conserves enstrophy
J3 conserves kinetic energy

Our result is

Theorem

The linear combination

J∗ =
1

3
[J1 + J2 + J3] (5)

is skew-symmetric, conserves enstrophy and kinetic energy
Stability follows directly by conservation of enstrophy a.

aChiara Sorgentone, Cristina La Cognata, Jan Nordström, A New High
Order Energy and Enstrophy Conserving Arakawa-like Jacobian Differential
Operator. Accepted in Journal of Computational Physics

Finally

The SBP formulation allows arbitrary high order accurate J∗
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Method of Manufactured Solution (MMS)

Analytical stream function:

ψ(x , y , t) = K{sin[2π(l1x − t)] + cos[2π(l2y − t)]}

K is a rescaling factor, l1 6= l2 are constant.
Derive the manufactured vorticity from ψ

ζ(x , y , t) =
∂2ψ

∂x2
+
∂2ψ

∂y 2

and the forcing term:

f (x , y , t) = ζt + J(ψ, ζ)

Finally we solve:
ζt + J(ψ, ζ) = f



Accuracy and Efficiency
Accuracy

∆t = C(h)p/4

4th order Runge-Kutta explicit time-integrator

SBP 2th SBP 4th SBP 6th SBP 8th
N Err p Err p Err p Err p
40 1.10 10−2 1.97 4.33 10−4 3.95 1.84 10−5 5.88 8.52 10−7 7.83
50 7.50 10−3 1.94 1.79 10−4 3.94 4.90 10−6 5.93 1.46 10−7 7.90
60 5.34 10−3 2.03 8.67 10−5 3.99 1.65 10−6 5.95 3.43 10−8 7.93
70 3.92 10−3 2.00 4.69 10−5 3.98 6.59 10−7 5.96 1.00 10−8 7.95

Efficiency

Comparison between the Arakawa (or second order SBP) scheme and high order approximations
of J∗ using SBP operators 4th, 6th and 8th order

Fixed time step ∆t = 10−3 and Final time T = 0.1

Arakawa SBP 4th SBP 6th SBP 8th
Error 4.83 · 10−4 4.34 · 10−4 4.70 · 10−4 4.08 · 10−4

CPU 1215.614 s 2.091 s 0.287 s 0.139 s
N 200 40 23 18



Weak Boundary conditions - Continuous case

Consider the bounded domain Ω and the dissipative vorticity equation in
Arakawa’s formulation

ξt +
1

3
[J1(ψ, ξ) + J2(ψ, ξ) + J3(ψ, ξ)] = ε∆ξ,

The energy method gives:

‖ξ‖2
t + 2‖∇ξ‖2 = −2

3

∫
∂Ω

[
ξ2∇⊥ψ · n − ξψ ∇⊥ξ · n

]
+ 2ε

∫
∂Ω
ξ ∂nξ

We want to bound the RHS to get an energy estimate



Continuous boundary conditions

T (x , y) = ξ(∇⊥ψ · n)− ψ(∇⊥ · ξ), (x , y) ∈ ∂Ω.

A boundary condition that bounds the energy is

BC = −2

3

[
ξT − |ξT |

2|ξ|

]
− ε∂ξ

∂n
= 0.

BC changes expression depending on the sign of ξT , namely

BC =


−2

3
T − ε∂ξ

∂n
= 0, if ξT < 0,

−ε∂ξ
∂n

= 0, if ξT > 0,



Continuous energy estimate

To bound the energy we add the null penalty term −
∫
∂Ω 2σξ · BC

‖ξ‖2
t + 2ε‖∇ξ‖2 = −

∫
∂Ω

{
2

3

[
ξT + 2σ

ξT − |ξT |
2|ξ|

]
− (1 + σ)2εξ

∂ξ

∂n

}
ds

and with the choice σ = −1, we get

‖ξ‖2
t + 2ξε‖∇ξ‖2 = −

∫
∂Ω

{
2

3

[
ξT − 2ξ

(
ξT − |ξT |

2|ξ|

)]}
.

defining ∂Ω+
i the intervals where ξT is positive and ∂Ω−j where it is

negative

‖ξ‖2
t + 2ε‖∇ξ‖2 =

∑
i

∫
∂Ω+

i

[
−2

3
ξT

]
+
∑
j

∫
∂Ω−

j

[
2

3
ξT

]
≤ 0,
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The semi-discrete energy estimate

Consider the SBP semi-discretization

∂ξξξ

∂t
+

1

3
[J1(ψψψ,ξξξ) + J2(ψψψ,ξξξ) + J3(ψψψ,ξξξ)]

= ε
[
(P−1

x Qx ⊗ Iy )2 + (Ix ⊗ P−1
y Qy )2

]
ξξξ

We apply the discrete energy method by multiply from the left by

ξξξT (Px ⊗ Py )

and mimic summation by part rule by using

Qx ,y = −QT
x ,y + Bx ,y

where

Bx ,y =

−1
0

1

 are boundary operators



The semi-discrete energy

∂

∂t
‖ξξξ2‖2

(Px⊗Py ) + 2ε(‖(P−1
x Qx ⊗ Iyξξξ)2‖2

(Px⊗Py ) + ‖(Ix ⊗ P−1
y Byξξξ)2‖2

(Px⊗Py ))

=
2

3
1T (Px ⊗ Py )

{
(P−1

x Bx ⊗ Iy )
[
diag(ξξξ)diag(ψψψ)diag(Ix ⊗ P−1

y Qyξξξ)
]

1

− (Ix ⊗ P−1
y By )

[
diag(ξξξ)diag(ψψψ)diag(P−1

x Qx ⊗ Iyξξξ)
]

1

+ (Ix ⊗ P−1
y By )

[
diag(ξξξ)diag(ξξξ)diag(P−1

x Qx ⊗ Iyψψψ)
]

1

− (P−1
x Bx ⊗ Iy )

[
diag(ξξξ)diag(ξξξ)diag(Ix ⊗ P−1

y Qyψψψ)
]

1
}

+ 2ε1T (Px ⊗ Py )
{

(P−1
x Bx ⊗ Iy )

[
diag(ξξξ)diag(P−1

x Qx ⊗ Iyξξξ)
]

+(Ix ⊗ P−1
y By )

[
diag(ξξξ)diag(Ix ⊗ P−1

y Qyξξξ)
]}
.



Semi-discrete boundary conditions

The discrete analogous of T

Ti =
{

(P−1
x Bx ⊗ Iy )

[
diag(ξξξ)diag(ψψψ)diag(Ix ⊗ P−1

y Qyξξξ)
]

1

− (Ix ⊗ P−1
y By )

[
diag(ξξξ)diag(ψψψ)diag(P−1

x Qx ⊗ Iyξξξ)
]

1

+ (Ix ⊗ P−1
y By )

[
diag(ξξξ)diag(ξξξ)diag(P−1

x Qx ⊗ Iyψψψ)
]

1

− (P−1
x Bx ⊗ Iy )

[
diag(ξξξ)diag(ξξξ)diag(Ix ⊗ P−1

y Qyψψψ)
]

1
}
i

and the SAT vector of penalties

SATi = −2τ

{
2

3

ξiTi − |ξiTi |
2|ξi |

}
+ ε

[
(P−1

x Bx ⊗ Iy )diag(P−1
x Qx ⊗ Iyξξξ) + (Ix ⊗ P−1

y By )diag(Ix ⊗ P−1
y Qyξξξ)

]
i

and SATi = 0 when ξi = 0.



The semi-discrete energy estimate

To bound the discrete energy we add the SAT vector to the discrete
energy and imposing τ = −1,

∂

∂t
‖ξξξ2‖2

(Px⊗Py ) + 2ε(‖(P−1
x Qx ⊗ Iyξξξ)2‖2

(Px⊗Py ) + ‖(Ix ⊗ P−1
y Byξξξ)2‖2

(Px⊗Py )) =

=− 2

3

∑
i∈D+

(Px ⊗ Py )iiξiTi +
2

3

∑
j∈D−

(Px ⊗ Py )jjξjTj ≤ 0.

we get a discrete energy estimate similar to the continuous one which
ensures stability

D+ the set of indices of T such that ξiTi > 0 and D− the set of indices
such that ξiTi < 0



Summary and Conclusions

1 The SBP formulation allows arbitrary high order accurate
approximation of the Arakawa’s like Jacobian J∗

2 For periodic problems, the SBP-J∗ mimics the analytical properties of
the continuous Jacobian

3 Well-posed boundary conditions for the dissipative vorticity equation
are derived on general domains

4 SAT technique is used to weakly imposed boundary conditions to the
approximation and make it stable



Thank you!
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