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Problem

Let A0, A1, . . . , AN ∈ C
n×n and consider the parameterized linear

time-independent ordinary differential equation

∂u

∂t
(t, ε) = A(ε) u(t, ε), u(0, ε) = u0,

where A is the matrix polynomial

A(ε) := A0 + εA1 + · · ·+ εNAN .

Specifically considered: problems arising from spatial

semidiscretizations of partial differential equations.
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Series representation

Let the coefficients of the Taylor expansion of the solution with
respect to the parameter ε be denoted by c0(t), c1(t), . . . , i.e.,

u(t, ε) = exp(tA(ε)) u0 =

∞∑

ℓ=0

εℓcℓ(t). (1)

As exp (tA(ε)) is an entire function of a matrix polynomial, the
expansion (1) exists for all ε ∈ C.
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Approximation

Consider the approximation stemming from the truncation of the
Taylor series
and from an approximation of the Taylor coefficients:

uk(t, ε) :=

k−1∑

ℓ=0

εℓcℓ(t) ≈

k−1∑

ℓ=0

εℓc̃ℓ(t) =: ũk(t, ε).

Our approach gives an explicit parameterization with respect to t

of the approximate coefficients c̃0(t),. . . ,c̃k−1(t).

Via (2) this gives an approximate solution with an explicit
parameterization with respect to ε and t.
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Main theorem

The Taylor coefficients c0(t), . . . , cm−1(t) are explicitly given by

vec(c0(t), . . . , cm−1(t)) = exp(tLm) ũ0,

where

Lm :=




A0

A1
. . .

...
. . .

. . .

A
N̂

. . .
. . .

. . .
. . .

. . .
. . .

. . .

A
N̂

. . . A1 A0




∈ C
mn×mn, ũ0 =




u0
0
...
0


 ,

and N̂ = min(m − 1,N).

• I.Najfeld and T.F. Havel. Derivatives of the matrix

exponential and their computation. Advances in Applied
Mathematics 16.3 (1995): 321-375.
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Krylov approximation of matrix functions

The Arnoldi iteration gives an orthogonal basis Qk ∈ Rn×k for the
Krylov subspace

Kk(A, b) = span{b,Ab,A2b, ...,Ak−1b},

and the Hessenberg matrix Hk = QT
k AQk ∈ Rk×k .

For any polynomial pn of degree n ≤ k − 1 it holds

pn(A)b = Qkpn(Hk)Q
∗

k b = Qkpn(Hk)e1.

We use the approximation

exp(A)b ≈ Qk exp(Hk )Q
T
k b.
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Matvecs for the Arnoldi iteration

Lemma. Suppose x = vec(x1, . . . , xj , 0, . . . , 0) = vec(X ) ∈ Cnm,
where x1, . . . , xj ∈ Cn and m > j + N . Then,

Lmx = vec(y1, . . . , yj+N , 0, . . . , 0),

where

yℓ =

min(N,ℓ−1)∑

i=max(0,ℓ−k)

Aixℓ−i , ℓ = 1, . . . , j + N .
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A priori error bound

After p steps, the error

errp(t, ε) := ‖u(t, ε)− ũp(t, ε)‖

is bounded as

errp(t, ε) ≤ C1(t, ε)

N−1∑

ℓ=0

C2(t, ε)
p+ℓ−1eC2(t,ε)

(p + ℓ− 2)!
‖u0‖+

2

√
1− |ε|

2N(p−1)

1− |ε|
2

(tα)pe tγ

p!
‖u0‖,

(2)

where C1(t, ε) and C2(t, ε) depend only on t and ε, and

α =
N∑

ℓ=0

‖Aℓ‖ and γ = µ(A0) +
N∑

ℓ=1

‖Aℓ‖,

and µ(B) denotes the logarithmic 2-norm.

The first term in (2) corresponds to the truncation of the Taylor
series,
the second to the error given by the Arnoldi approximation.
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Integral representation of the coefficients

Fromo the main theorem it follows that

c ′j (t) =

min(N,j)∑

i=0

Aicj−i (t).

Using the variation-of-constants formula

u(t) = e tA0u0 +

∫ t

0

e tAg(u(τ))dτ,

which gives the the exact solution at time t for the semilinear ODE

u′(t) = A0u(t) + g(u(t)), u(0) = u0,

we get an integral formula for the coefficients cℓ(t).
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Integral representation of the coefficients

Let ℓ and N be positive integers such that N ≤ ℓ. Denote by Cℓ

the set of compositions of ℓ, i.e.,

Cℓ = {(i1, . . . , ir ) ∈ N
r
+ : i1 + · · ·+ ir = ℓ},

and further denote

Cℓ,N := {(i1, . . . , ir ) ∈ Cℓ : is ≤ N for all 1 ≤ s ≤ r}.

Then,

c0(t) = e tA0u0,

cℓ(t) =
∑

(i1,...,ir )∈Cℓ,N

t∫

0

e (t−ti1 )A0Ai1

ti1∫

0

e (ti1−ti2 )A0Ai2

. . .

tir−1∫

0

e (tir−1
−tir )A0Air c0(tir )dti1 . . . dtir for ℓ > 0.
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A posteriori error estimate

A posteriori error estimates obtained using techniques given in

• Y.Saad. Analysis of some Krylov subspace approximations to

the matrix exponential operator. SIAM J. Numer. Anal., 29
(1992), pp. 209–228.

For the Arnoldi approximation of eAb it holds that

eAb − Qp exp(Hp)e1 = hp+1,p

∞∑

ℓ=1

eTp ϕℓ(Hp)e1 A
ℓ−1qp+1,

where hp+1,p is the subdiagonal element of the Hessenberg matrix,
and

ϕℓ(z) =

∞∑

j=0

z j

(j+ℓ)! .
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Numerical example

Consider the damped wave equation inside the 3D unit box.
The governing 2n-dimensional first-order ODE:

d

dt

[
u(t)
u′(t)

] [
0 I

−M−1K −M−1C (γ)

] [
u(t)
u′(t)

]
,

[
u(0)
u′(0)

]
=

[
u0
u′0

]
∈ R

2n,

where C (γ1, γ2) = γ1C1 + γ2C2.

ODE obtained by finite differences with 15 discretization points in
each dimension, i.e., n = 153.

K denotes the discretized Laplacian, C (γ1, γ2) the damping matrix
stemming from Robin boundary conditions, and M the mass
matrix.

Reformulate the ODE by setting

A0 =

[
0 I

−M−1K −M−1γ1C1

]
, A1 =

[
0 0
0 −M−1C2

]
.
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Linear example 2
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(a) γ1 = γ2 = 0
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(b) γ1 = 2, γ2 = 0
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(c) γ1 = 1, γ2 = 1
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(d) γ1 = 2, γ2 = 2

Figure : The solution in the plane z = 0.5, for different values of
(γ1, γ2) at t = 1.
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Numerical example
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Figure : 2-norm errors of approximations ũk,p(t, ε) and the error
estimates, when γ1 = 2 and γ2 has the values ε1 = 1, ε2 = 1.5 and
ε3 = 2.
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