Numerical evaluation of the roots of orthogonal polynomials

Diego Ruiz Antolín

University of Cantabria Santander(Spain)

Many scientific problems: resonance, quantum mechanics...

Many scientific problems: resonance, quantum mechanics...

• Expansions of other functions.

- Many scientific problems: resonance, quantum mechanics...
- Expansions of other functions.
- Gaussian quadrature.

Let us define the integral

$$\int_a^b f(x)\omega(x)dx$$

where $\omega(x)$ is a weight function. Let p_n be a polynomial of degree n such that

$$\int_{a}^{b} x^{k} p_{n}(x) \omega(x) dx = 0, \quad k = 0, 1, ..., n - 1.$$

Let $x_1,...,x_n$ be the zeros of p_n and let ω_i be defined by

٠

$$\omega_i = \int_a^b L_i(x)\omega(x)dx, \quad L_i(x) = \prod_{k=1, k \neq i}^n \frac{x - x_k}{x_i - x_k},$$

where i = 1, 2, ..., n. Then, the quadrature rule,

$$\int_{a}^{b} f(x)\omega(x)dx \approx \sum_{i=1}^{n} \omega_{i}f(x_{i}),$$

is a Gaussian quadrature rule.

 G. H. Golub, J. H. Welsch, Calculation of Gauss quadrature rules, Math. Comp. 23 (1969), 221-230.

- G. H. Golub, J. H. Welsch, *Calculation of Gauss quadrature rules*, Math. Comp. 23 (1969), 221-230.
- K. Petras, On the computation of the Gauss-Legendre quadrature formula with a given precision, J. Comput. Appl. Math., 112 (1999), pp. 253–267.

- G. H. Golub, J. H. Welsch, *Calculation of Gauss quadrature rules*, Math. Comp. 23 (1969), 221-230.
- K. Petras, On the computation of the Gauss-Legendre quadrature formula with a given precision, J. Comput. Appl. Math., 112 (1999), pp. 253–267.
- A. Glaser, X. Liu, V. Rokhlin, A fast algorithm for the calculation of the roots of special functions, SIAM J. Sci. Comp., 2007, 29: 1420–1438.

- G. H. Golub, J. H. Welsch, *Calculation of Gauss quadrature rules*, Math. Comp. 23 (1969), 221-230.
- K. Petras, On the computation of the Gauss-Legendre quadrature formula with a given precision, J. Comput. Appl. Math., 112 (1999), pp. 253–267.
- A. Glaser, X. Liu, V. Rokhlin, A fast algorithm for the calculation of the roots of special functions, SIAM J. Sci. Comp., 2007, 29: 1420–1438.
- J. Segura, Reliable Computation of the Zeros of Solutions of Second Order Linear ODEs Using a Fourth Order Method, SIAM J. Num. Anal., v.48 n.2, p.452-469, April 2010.

• The process may be rather slow.

Let the orthonormal polynomials $\tilde{p}_i(\boldsymbol{x})$ satisfy the recurrence relation

$$\alpha_1 \tilde{p}_1(x) + \beta_0 \tilde{p}_0(x) = x \tilde{p}_0(x)$$

 $\alpha_{k+1}\tilde{p}_{k+1}(x) + \beta_k\tilde{p}_k(x) + \alpha_k\tilde{p}_{k-1}(x) = x\tilde{p}_k(x), \quad k = 1, 2, \dots$

and let x_j be a zero of the polynomial \tilde{p}_n for a fixed n, then

$$\begin{pmatrix} \beta_0 & \alpha_1 & 0 & \dots & 0\\ \alpha_1 & \beta_1 & \alpha_2 & & \\ 0 & \alpha_2 & \beta_2 & & \vdots\\ \vdots & & \ddots & \alpha_{n-1}\\ 0 & \dots & \alpha_{n-1} & \beta_{n-1} \end{pmatrix} \begin{pmatrix} \tilde{p}_0(x_j) \\ \tilde{p}_1(x_j) \\ \vdots\\ \tilde{p}_{n-2}(x_j) \\ \tilde{p}_{n-1}(x_j) \end{pmatrix} = x_j \begin{pmatrix} \tilde{p}_0(x_j) \\ \tilde{p}_1(x_j) \\ \vdots\\ \tilde{p}_{n-2}(x_j) \\ \tilde{p}_{n-1}(x_j) \end{pmatrix}$$

We have that $\tilde{p}_n(x_j) = 0$ if, and only if, x_j is an eigenvalue of the above square matrix.

- The process may be rather slow.
- The convergence is not guaranteed.

- The process may be rather slow.
- The convergence is not guaranteed.
 - Proximity to singularities.

- The process may be rather slow.
- The convergence is not guaranteed.
 - Proximity to singularities.
 - Zeros are too close to each other.

- G. H. Golub, J. H. Welsch, *Calculation of Gauss quadrature rules*, Math. Comp. 23 (1969), 221-230.
- K. Petras, On the computation of the Gauss-Legendre quadrature formula with a given precision, J. Comput. Appl. Math., 112 (1999), pp. 253–267.
- A. Glaser, X. Liu, V. Rokhlin, A fast algorithm for the calculation of the roots of special functions, SIAM J. Sci. Comp., 2007, 29: 1420–1438.
- J. Segura, Reliable Computation of the Zeros of Solutions of Second Order Linear ODEs Using a Fourth Order Method, SIAM J. Num. Anal., v.48 n.2, p.452-469, April 2010.

We consider the ODE

$$y''(x) + A(x)y(x) = 0.$$

We consider the ODE

$$y''(x) + A(x)y(x) = 0.$$

Given the function

$$h(x) = \frac{y(x)}{y'(x)},$$

Numerical evaluation of the roots of orthogonal polynomials

We consider the ODE

$$y''(x) + A(x)y(x) = 0.$$

Given the function

$$h(x) = \frac{y(x)}{y'(x)},$$

we have the Riccati equation

$$h'(x) = 1 + (\omega(x)h(x))^2, \quad \omega(x) = \sqrt{A(x)}.$$

Numerical evaluation of the roots of orthogonal polynomials

Let α be such that $y(\alpha) = 0$. We integrate around α

$$\int_{\alpha}^{x} \frac{h'(\zeta)}{1 + (\omega(\zeta)h(\zeta))^2} d\zeta = x - \alpha,$$

Let α be such that $y(\alpha) = 0$. We integrate around α

$$\int_{\alpha}^{x} \frac{h'(\zeta)}{1 + (\omega(\zeta)h(\zeta))^2} d\zeta = x - \alpha,$$

from where we obtain the approximation

$$\alpha \approx x - \frac{1}{\omega(x)} \arctan(\omega(x)h(x)).$$

Let α be such that $y(\alpha) = 0$. We integrate around α

$$\int_{\alpha}^{x} \frac{h'(\zeta)}{1 + (\omega(\zeta)h(\zeta))^2} d\zeta = x - \alpha,$$

from where we obtain the approximation

$$\alpha \approx x - \frac{1}{\omega(x)} \arctan(\omega(x)h(x)).$$

This leads to the FPM

$$\begin{aligned} x_{n+1} &= g(x_n), \quad g(x) = x - \frac{1}{\omega(x)} \arctan(\omega(x)h(x)) \\ \omega(x) &= \sqrt{A(x)}, \quad h(x) = \frac{y(x)}{y'(x)} \end{aligned}$$

Advantages of this method:

It is of fourth order.

Advantages of this method:

- It is of fourth order.
- It is globally convergent.

We redefine the arctangent as follows,

$$\label{eq:arctan} \arctan_j(\zeta) = \left\{ \begin{array}{ll} \arctan(\zeta) & if \quad j\zeta > 0 \\ \\ \arctan(\zeta) + j\pi & if \quad j\zeta \leq 0 \end{array} \right., \quad j = \pm 1$$

We redefine the arctangent as follows,

$$\label{eq:arctan} \arctan_j(\zeta) = \left\{ \begin{array}{ll} \arctan(\zeta) & if \quad j\zeta > 0 \\ \\ \arctan(\zeta) + j\pi & if \quad j\zeta \leq 0 \end{array} \right., \quad j = \pm 1$$

obtaining the FPM

$$T_{j}(x) = \begin{cases} x - \frac{1}{\omega(x)} \arctan_{j}(\omega(x)h(x)) & if \quad y'(x) \neq 0\\ \\ x - \frac{1}{\omega(x)}j\frac{\pi}{2} & if \quad y'(x) = 0 \end{cases}, \quad j = \pm 1\\ \\ x_{n+1} = T_{j}(x_{n}), \quad j = sign(A'(x)) \end{cases}$$

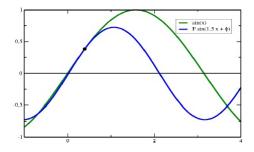
Numerical evaluation of the roots of orthogonal polynomials

Let y(x) be a solution of y''(x) + A(x)y(x) = 0 with two consecutive zeros α_1 and α_2 such that A(x) > 0 in $[\alpha_1, \alpha_2]$. Then the following hold:

- I If A'(x) > 0 in (α_1, α_2) , then the FPM converges monotonically to α_1 for any $x_0 \in (\alpha_1, \alpha_2]$.
- 2 If A'(x) < 0 in (α_1, α_2) , then the FPM converges monotonically to α_2 for any $x_0 \in [\alpha_1, \alpha_2)$.

The order of convergence is 4.

Graphically, the behaviour of the method is as follows,



y''(x)+y(x)=0,y''(x)+2.25 y(x)=0

Numerical evaluation of the roots of orthogonal polynomials

If A(x) < 0, we consider

$$h(x) = \frac{y(x)}{y'(x)}$$

If A(x) < 0, we consider

$$h(x) = \frac{y(x)}{y'(x)}$$

then we have the Riccati equation

$$h'(x) = 1 - (\omega(x)h(x))^2, \quad \omega(x) = \sqrt{-A(x)}.$$

If A(x) < 0, we consider

$$h(x) = \frac{y(x)}{y'(x)}$$

then we have the Riccati equation

$$h'(x) = 1 - (\omega(x)h(x))^2, \quad \omega(x) = \sqrt{-A(x)}.$$

This leads to the FPM,

$$x_{n+1} = g(x_n), \quad g(x) = x - \frac{1}{\omega(x)} tanh^{-1}(\omega(x)h(x))$$

Numerical evaluation of the roots of orthogonal polynomials

$$y''(x) + (2n + 1 - x^2)y(x) = 0,$$

$$y''(x) + (2n+1-x^2)y(x) = 0,$$

which has the solution

$$\tilde{H}_n(x) = \frac{e^{-\frac{x^2}{2}}}{\pi^{\frac{1}{4}}2^{\frac{n}{2}}\sqrt{n!}}H_n(x),$$

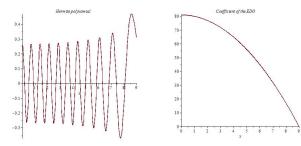
being $H_n(x)$ the Hermite polynomial of order n.

$$y''(x) + (2n+1-x^2)y(x) = 0,$$

which has the solution

$$\tilde{H}_n(x) = \frac{e^{-\frac{x^2}{2}}}{\pi^{\frac{1}{4}} 2^{\frac{n}{2}} \sqrt{n!}} H_n(x),$$

being $H_n(x)$ the Hermite polynomial of order n. We see that



Numerical evaluation of the roots of orthogonal polynomials

$$y''(x) + (2n + 1 - x^2)y(x) = 0,$$

which has the solution

$$\tilde{H}_n(x) = \frac{e^{-\frac{x^2}{2}}}{\pi^{\frac{1}{4}}2^{\frac{n}{2}}\sqrt{n!}}H_n(x),$$

being $H_n(x)$ the Hermite polynomial of order n. We see that

Number of zeros	CPU time
1000	0.004
10000	0.047
100000	0.468
1000000	4.68

Thank you for your attention

Numerical evaluation of the roots of orthogonal polynomials