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Applications of the zeros of functions:

Many scientific problems: resonance, quantum mechanics...

Expansions of other functions.

Gaussian quadrature.
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Let us define the integral ∫ b

a
f(x)ω(x)dx

where ω(x) is a weight function. Let pn be a polynomial of degree
n such that∫ b

a
xkpn(x)ω(x)dx = 0, k = 0, 1, ..., n− 1.

Let x1, ..., xn be the zeros of pn and let ωi be defined by

ωi =
∫ b

a
Li(x)ω(x)dx, Li(x) =

n∏
k=1,k 6=i

x− xk
xi − xk

,

where i = 1, 2, ..., n. Then, the quadrature rule,∫ b

a
f(x)ω(x)dx ≈

n∑
i=1

ωif(xi),

is a Gaussian quadrature rule.
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Some algorithms for the evaluation of the roots of functions:

G. H. Golub, J. H. Welsch, Calculation of Gauss quadrature
rules, Math. Comp. 23 (1969), 221-230.
K. Petras, On the computation of the Gauss-Legendre
quadrature formula with a given precision, J. Comput. Appl.
Math., 112 (1999), pp. 253–267.
A. Glaser, X. Liu, V. Rokhlin, A fast algorithm for the
calculation of the roots of special functions, SIAM J. Sci.
Comp., 2007, 29: 1420–1438.
J. Segura, Reliable Computation of the Zeros of Solutions of
Second Order Linear ODEs Using a Fourth Order Method,
SIAM J. Num. Anal., v.48 n.2, p.452-469, April 2010.
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Let the orthonormal polynomials p̃i(x) satisfy the recurrence
relation

α1p̃1(x) + β0p̃0(x) = xp̃0(x)

αk+1p̃k+1(x) + βkp̃k(x) + αkp̃k−1(x) = xp̃k(x), k = 1, 2, ...

and let xj be a zero of the polynomial p̃n for a fixed n, then

β0 α1 0 . . . 0
α1 β1 α2

0 α2 β2
...

... . . . αn−1
0 . . . αn−1 βn−1




p̃0(xj)
p̃1(xj)

...
p̃n−2(xj)
p̃n−1(xj)

 = xj


p̃0(xj)
p̃1(xj)

...
p̃n−2(xj)
p̃n−1(xj)


We have that p̃n(xj) = 0 if, and only if, xj is an eigenvalue of the
above square matrix.
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Problems that may arise when computing the zeros of functions:
The process may be rather slow.

The convergence is not guaranteed.

Proximity to singularities.

Zeros are too close to each other.
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We consider the ODE

y′′(x) +A(x)y(x) = 0.

Given the function
h(x) = y(x)

y′(x) ,

we have the Riccati equation

h′(x) = 1 + (ω(x)h(x))2, ω(x) =
√
A(x).

Numerical evaluation of the roots of orthogonal polynomials



Numerical evaluation of the roots of orthogonal polynomials

We consider the ODE

y′′(x) +A(x)y(x) = 0.

Given the function
h(x) = y(x)

y′(x) ,

we have the Riccati equation

h′(x) = 1 + (ω(x)h(x))2, ω(x) =
√
A(x).

Numerical evaluation of the roots of orthogonal polynomials



Numerical evaluation of the roots of orthogonal polynomials

We consider the ODE

y′′(x) +A(x)y(x) = 0.

Given the function
h(x) = y(x)

y′(x) ,

we have the Riccati equation

h′(x) = 1 + (ω(x)h(x))2, ω(x) =
√
A(x).

Numerical evaluation of the roots of orthogonal polynomials



Numerical evaluation of the roots of orthogonal polynomials

Let α be such that y(α) = 0. We integrate around α∫ x

α

h′(ζ)
1 + (ω(ζ)h(ζ))2dζ = x− α,

from where we obtain the approximation

α ≈ x− 1
ω(x)arctan(ω(x)h(x)).

This leads to the FPM

xn+1 = g(xn), g(x) = x− 1
ω(x)arctan(ω(x)h(x))

ω(x) =
√
A(x), h(x) = y(x)

y′(x)
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Advantages of this method:
It is of fourth order.

It is globally convergent.
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We redefine the arctangent as follows,

arctanj(ζ) =


arctan(ζ) if jζ > 0

arctan(ζ) + jπ if jζ ≤ 0
, j = ±1

obtaining the FPM

Tj(x) =


x− 1

ω(x)arctanj(ω(x)h(x)) if y′(x) 6= 0

x− 1
ω(x)j

π
2 if y′(x) = 0

, j = ±1

xn+1 = Tj(xn), j = sign(A′(x))
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Let y(x) be a solution of y′′(x) +A(x)y(x) = 0 with two
consecutive zeros α1 and α2 such that A(x) > 0 in [α1, α2]. Then
the following hold:

1 If A′(x) > 0 in (α1, α2), then the FPM converges
monotonically to α1 for any x0 ∈ (α1, α2].

2 If A′(x) < 0 in (α1, α2), then the FPM converges
monotonically to α2 for any x0 ∈ [α1, α2).

The order of convergence is 4.
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Graphically, the behaviour of the method is as follows,

y”(x)+y(x)=0,y”(x)+2.25 y(x)=0
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If A(x) < 0, we consider

h(x) = y(x)
y′(x)

then we have the Riccati equation

h′(x) = 1− (ω(x)h(x))2, ω(x) =
√
−A(x).

This leads to the FPM,

xn+1 = g(xn), g(x) = x− 1
ω(x) tanh

−1(ω(x)h(x))
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Let us consider the EDO

y′′(x) + (2n+ 1− x2)y(x) = 0,

which has the solution

H̃n(x) = e−
x2
2

π
1
4 2

n
2
√
n!
Hn(x),

being Hn(x) the Hermite polynomial of order n.We see that
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Number of zeros CPU time
1000 0.004
10000 0.047
100000 0.468
1000000 4.68
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Thank you for your attention
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