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PDE-constraint optimization
• General formulation of a PDE-constrained optimization problem:

min
y ,u
J (y , u)

subject to L(y , u) = 0︸ ︷︷ ︸
the state equation

,

J represents the cost functional,
L is a PDE-constraint,
y is the state variable,
u is the decision/control/design or parameter identification variable.



Dealing with optimization problems
We construct the so-called Lagrangian:

L(y , u, λ) = J (y , u) + λ · L(y , u)

with λ - the Lagrange variable (the dual or adjoint state variable).
Most often finding the solution of PDE-constrained minimization
problem is through the first order optimality conditions, also known
as the Karush-Kuhn-Tucker (KKT) conditions:

∂L
∂y

= 0,
∂L
∂u

= 0,
∂L
∂λ

= 0︸ ︷︷ ︸
L(y ,u)=0

.



Dealing with the KKT system numerically
Numerically dealing with the PDE-constrained optimization
problems requires two steps: discretization and optimization.
Two possible approaches:

I Optimize then discretize
I Formulate the Lagrangian and its corresponding first order

optimality conditions, discretize them, and form the algebraic
system.

I Discretize then optimize
I Discretize the objective function, formulate its Lagrangian and

the corresponding first order optimality conditions, and then
form an algebraic system.

• For some PDE-constraint optimization problems, especially when
the PDE is not self-adjoint, the two approaches lead to different
algebraic systems.



PDE-constraint optimization, cont.
• Consider a heating source u applied to the surface of a domain Ω
to control the temperature y . The temperature distribution y in Ω
is described by −∆y = u (or −∇ · a∇y = u) Ω.
• Control the heating source u, such that Ω acquires a
temperature y , as close to the target ŷ as possible.

• This task takes the form of an optimization problem:

min
y ,u
J (y , u) =

1
2
‖y − ŷ‖2L2(Ω) +

1
2
β‖u‖2L2(Ω)

subject to −∆y = u in Ω︸ ︷︷ ︸
distributed control

or −∆y = f , y = u on ∂Ω︸ ︷︷ ︸
boundary control

The term
1
2
β‖u‖2L2(Ω) is added to make the solution well-defined.

β > 0 =⇒ the regularization parameter.



Benchmarking distrib. opt. control problems
Task:

compare the performance of different numerical solution techniques
and preconditioners

using the same software, on one and the same computer.

I the distributed optimal control of the Poisson equation.
I the distributed optimal control of the convection-diffusion

equation.



Benchmarking distrib. opt. control problems

min
y ,u

1
2
‖y − ŷ‖2L2(Ω) +

1
2
β‖u‖2L2(Ω)

s.t.
−∆y = u in Ω, Poisson control
y = ŷ |∂Ω on ∂Ω

−ε∆y + (~w · ∇)y + cy = u in Ω Conv.Diff. control
y = ŷ |∂Ω on ∂Ω

Ω = [0, 1]2 defines the domain with boundary ∂Ω.



ŷ is the desired state given by

Poisson: ŷ =

 (2x1 − 1)2(2x2 − 1)2 if x ∈
[
0,

1
2

]2
0 otherwise.

Conv.Diff.: same ŷ , ~w = [cosθ, sinθ] for θ = π
4 ,

with ϕ(z) = (1− cos(0.8πz))(1− z)2.



Distrb.opt. control, Poisson equation, KKT

A

yu
λ

 ≡
M 0 KT

0 βM −M
K −M 0

yu
λ

 =

b0
d

 .
If the state y, the control u and the adjoint λ are discretized using the same
finite element spaces, then we can eliminate the control u =

1
β
λ, and reduce

the system:

A
[
y
λ

]
≡

M KT

K − 1
β
M

[y
λ

]
=

[
b
d

]
(K = KT ).



Conv.Diff.: Stabilization using Local Projection
schemes, KKT

Local projection stabilization, Becker and Vexler (2007), leads to:

A

yu
λ

 ≡
M 0 FT

0 βM −M
F −M 0

yu
λ

 =

b0
d


and the corresponding reduced system is given by

A
[
y
λ

]
≡

M FT

F − 1
β
M

[y
λ

]
=

[
b
d

]

The scheme leads to a F − FT system with an optimal error
convergence order.



The arising matrices have a very rich
structure.



Saddle-point systems naturally arise
The finite element discretization plus KKT conditions lead to a
saddle-point system

Ax =

[
A B1
B2 −C

] [
x1
x2

]
=

[
f
g

]
where f ∈ Rn, g ∈ Rm, A ∈ Rn×n, B1, BT

2 ∈ Rm×n, C ∈ Rm×m,
m ≤ n.
A is large, sparse and indefinite.

Thus, to solve A efficiently ... Krylov iterative methods....
preconditioning ...



General preconditioners for saddle point matrices
Recall the general form of a saddle point matrix:

A =

[
A B1
B2 −C

]
.

A preconditioner can have a block-diagonal or a block
lower-triangular structure, i.e.,

Pbd =

[
A 0
0 −S

]
, Pbt =

[
A 0
B2 −S

]
, Pbt =

[
[A] 0
B2 −[S ]

]
.

Here S is the (negative) Schur complements of A,

S = C + B2A−1B1.



Iterative solvers and preconditioning
Preconditioned Krylov subspace methods: MINRES, (F)GMRES
Desirable properties: parameter-independent solvers (h, β, w etc.)

• Techniques used to construct preconditioners for saddle point
systems arising from distributed optimal control problems:

I Schur complement approximation
I Operator preconditioning with standard and non-standard

norms
I Structure-utilizing factorization.



Preconditioners: Poisson equation (full system)
I Block-diagonal preconditioner

P̂bd =

M̂ 0 0
0 βM̂ 0
0 0 (K + 1√

β
M)M−1(K + 1√

β
M)T

 .
I Lower block-triangular preconditioner

P̂lbt =

M̂ 0 0
0 βM̂ 0
K −M −{(K + 1√

β
M)M−1(K + 1√

β
M)T}

 .



Preconditioners: Poisson equation (reduced)
I Block-diagonal preconditioner

P̂bd1 =

[
M̂ 0
0 (K + 1√

β
M)M−1(K + 1√

β
M)T

]

eigs
(

((K +
1√
β

M)M−1(K +
1√
β

M)T )−1S
)
∈ [0.5, 1].

I Block-diagonal preconditioner, nonstandard norms

P̂bd2 =

M +
√
βK 0

0
1
β

(M +
√
βK )

 , κ(P̂−1
bd2
A) ≤

√
2.



Preconditioners: Poisson equation (reduced)
Structure-utilizing technique

A =

[
M −βKT

αK M

]
.

PUU =

[
M −βKT

αK M +
√
αβ(K + KT )

]
.

eigs(P−1
UUA) ∈ [0.5, 1]

M, pos. def., K + KT pos. semi-definite, ker(M) ∪ ker(K ) = {0},
ker(M) ∪ ker(KT ) = {0}



Preconditioners: Poisson equation (reduced)
• An efficient algorithm to solve

PUU

[
x
y

]
=

[
M −βK
αK M + 2

√
αβK

] [
x
y

]
=

[
f
g

]
.

based on the exact form of the inverse of PUU
Let Hi = M +

√
αβ Ki , i = 1, 2 be nonsingular. Then

P−1
UU =

H−1
1 + H−1

2 − H−1
2 MH−1

1

√
β
α (I − H−1

2 M)H−1
1

−
√

α
β H−1

2 (I −MH−1
1 ) H−1

2 MH−1
1

 .



Efficient algorithms for the action of P−1UU

Algorithm:The action of P−1
UU on a vector

1: Compute b1 =

√
α√
β
f + g

2: Solve (M +
√
αβK1)s1 = b1

3: Compute b2 = Ms1 −
√
α√
β
f

4: Solve (M +
√
αβK2)y = b2

5: Compute x =

√
β√
α

(s1 − y)



Preconditioners: conv.-diff.M̂ 0 0
0 βM̂ 0
0 0 (F + 1√

β
M)M−1(F + 1√

β
M)T



M̂ 0 0
0 βM̂ 0
F −M −{(F + 1√

β
M)M−1(F + 1√

β
M)T}


[
M̂ 0
0 (F + 1√

β
M)M−1(F + 1√

β
M)T

]
M +

√
βF 0

0
1
β

(M +
√
βF )


[
M −βFT

F M +
√
β(F + FT )

]
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β
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β
M)M−1(F + 1√

β
M)T

]
M +

√
βF 0

0
1
β

(M +
√
βF )


[
M −βFT

F M +
√
β(F + FT )

]



Preconditioners: conv.-diff.M̂ 0 0
0 βM̂ 0
0 0 (F + 1√

β
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β
M)T
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β
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β
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β
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β
M)T
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√
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0
1
β
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√
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Preconditioners: conv.-diff.M̂ 0 0
0 βM̂ 0
0 0 (F + 1√

β
M)M−1(F + 1√

β
M)T

M̂ 0 0
0 βM̂ 0
F −M −{(F + 1√

β
M)M−1(F + 1√

β
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M̂ 0
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β
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β
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0
1
β
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√
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Preconditioners: conv.-diff.M̂ 0 0
0 βM̂ 0
0 0 (F + 1√

β
M)M−1(F + 1√

β
M)T

M̂ 0 0
0 βM̂ 0
F −M −{(F + 1√

β
M)M−1(F + 1√

β
M)T}


[
M̂ 0
0 (F + 1√

β
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β
M)T

]
M +

√
βF 0

0
1
β

(M +
√
βF )


[
M −βFT

F M +
√
β(F + FT )

]



Software and solvers used:

• All preconditioners are tested and compared within the
same environment:
• • C++ implementation using the open source package

DEAL.II and
• • open source libraries such as Trillinos.
To our best of knowledge such comparisons have not been
performed yet.



Software and solvers used:

I Solutions with M
replaced by 20 Chebyshev semi-iterations.

I Solutions with K , M +
√
βK , (K + 1√

β
M), M +

√
βF ,

(F + 1√
β
M)

replaced by 1 iteration of V-cycle Algebric Multigrid (AMG) solver
with 2 pre-smoothing and 2 post-smoothing steps by symmetric
Gauss-Seidel smoother.



Poisson equation:
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Figure : Mesh size h = 2−6 and β = 10−6, comparison across different
preconditioners.



Convection-diffusion:
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Figure : Mesh size h = 2−6 and β = 10−6



Outcome
• Reducing the discrete system when such a possibility is available
leads to better performance both in terms of computational time
and the iteration count.
• Full utilization of the structure helps.
• When reporting numerical experiments, think about:
reproducibility of the numerical results and
fair comparison with other methods.
This will make the paper very useful also for applied scientists and
practitioners, that we hope to reach with our work.

• The UU framework has been tuned also for full Stokes control
problem, showing analogous behaviour.



Thank you for your attention!



Example: Temperature control

(a) y, β = 2× 10−6 (b) u, β = 2× 10−6

Figure : State (y) (temperature) and control (u) (heat) distribution

.
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