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Motivation

In the SBP–SAT framework, for unsteady initial
boundary value problems we can usually state

continuous well–posedness ⇒ stable discretization

Such properties are related to the sign of the eigenvalues
of spatial operators being nonpositive (or nonnegative),
both in the continuous and discrete settings.

ut +Lu = f, x ∈ Ω, t > 0 → vt +LDv = f , t > 0.

eig (L) ≥ 0 ⇒ eig (LD) ≥ 0.
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The continuous problem

Consider the one–dimensional Poisson equation with
two boundary conditions

−uxx = F (x) , 0 < x < 1,

L0u (0) :=
(
a0 + b0

∂
∂x

)
u (0) = g0, a0, b0 ∈ R,

L1u (1) :=
(
a1 + b1

∂
∂x

)
u (1) = g1, a1, b1 ∈ R.

The solution to is not unique if, and only if,

a0 (a1 + b1)− a1b0 = 0. (1)
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Proof

The solution consists of two parts

u (x) = c0 + c1x︸ ︷︷ ︸
homogeneous

+ up (x)︸ ︷︷ ︸
particular

, c0, c1 ∈ R, (2)

where up (x) = up (F (x)) does not depend on the
boundary conditions.
By applying the boundary conditions to (2) leads to

E

[
c0
c1

]
=

[
a0 b0
a1 a1 + b1

] [
c0
c1

]
=

[
g0 − L0up (0)
g1 − L1up (1)

]
.

The condition det (E) = 0 yields (1).
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Recalling some theory

Let T ∈ Rm×n. Then we define

Definition (Rank and Nullspace of a matrix)

The number of linearly independent rows (or columns)
of T is said to be the rank of T and it is denoted rk (T ).
The null space of T is the set

nul (T ) = {w ∈ Rn : Tw = 0} .
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Remark (Subadditivity of the rank)

The rank is subadditive: if A and B are matrices of the
same dimensions, then

rk (A+B) ≤ rk (A) + rk (B) .

Theorem (Rank–nullity theorem)

The rank and dimension of the null space of T sums to
the number of its columns, i.e.

rk (T ) + dim (nul (T )) = n.

Therefore a square matrix is non–singular if, and only
if, dim (nul (T )) = 0.
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Recalling Summation–By–Parts operators

Definition

D = P−1Q is a first–derivative SBP operator if
Q+QT = B = diag (−1, 0, . . . , 0, 1) and P is a
symmetric positive definite matrix.

Definition

D2 = P−1
(
−STM +B

)
S is a second–derivative SBP

operator if M is positive semidefinite and S
approximates the first derivative operator at the
boundaries.
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The discrete problem

Simultaneous–Approximation–Terms (SAT) enforces the
boundary conditions weakly.

The SBP–SAT approximation of the Poisson problem
can be formally written as

−D2v = F + SAT, D2 ∈ R(N+1)×(N+1) (3)

where SAT collects the penalty terms of the
discretization.
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Consider the following SAT term

SAT =− α0P
−1E0 [(a0I + b0S)v − g0]

+ αNP
−1EN [(a1I + b1S)v − g1] ,

where we have used α0, αN ∈ R, E0 = diag (1, 0, . . . , 0),
EN = diag (0, . . . , 0, 1) ∈ R(N+1)×(N+1).

The discrete Poisson problem is Av = G, where

A = D2−α0P
−1E0 (a0I + b0S)+αNP

−1EN (a1I + b1S) .

Note: G is independent of v.
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A reasonable assumption

We require that

1 = [1, . . . , 1]T ⇒ D1 = 0, D21 = 0,

x = h [0, . . . , N ]T ⇒ Dx = 1, D2x = 0.
(4)
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Ill–posedness implies singularity

Theorem : ill–posedness ⇒ A singular

Proof : Let y = β1 + γx, with (β, γ) ∈ R2 \ {(0, 0)}.
Since D2y = 0 and P is positive definite, we can write

Ay = 0 ⇒ (a0I + b0S)y = 0,
(a1I + b1S)y = 0.

Substituting y and using (4), we get

E

[
β
γ

]
=

[
a0 b0
a1 a1 + b1

] [
β
γ

]
=

[
0
0

]
det(E)=0⇒ (1).
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Numerical check
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Figure: b0 = 4, a1 = 1, b1 = 1. With this choice (1) is
satisfied for a0 = 2.
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Figure: b0 = 0, a1 = 1, b1 = −1. With this choice (1) is
satisfied for any a0 ∈ R.
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Well–posedness implies nonsingularity?

If the converse proposition holds, it is equivalent to

well–posedness ⇒ A nonsingular

Each SAT term has rank 1: by subadditivity we get

rk (A) ≤ rk (D2) + rk
(
α0P

−1E0 (a0I + b0S)
)

+ rk
(
αNP

−1EN (a1I + b1S)
)

= rk (D2) + 2.

Therefore

rk (D2) < N − 1 ⇒ A singular ∀a0, a1, b0, b1 ∈ R.



Singularity of the Laplacian A.A.Ruggiu, J.Nordström August 24, 2015 14

However, even by assuming rk (D2) = N − 1, we cannot
conclude that A is nonsingular (rk (A) ≤ N + 1). We
need:

Assumption

The matrix P is diagonal. Moreover, the matrix
D2,CEN ∈ R(N−1)×(N+1) such that

D2 =

 d20

D2,CEN

d2N

 ∈ R(N+1)×(N+1)

has full rank.
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Theorem : well–posedness ⇒ A nonsingular

Idea of the proof :
• If P is diagonal, then the SAT terms consist of only
one nonzero row each.

• It can be shown that

det (A) = det

−
[
α0P

−1E0 (a0I + b0S)
]
0,·

D2,CEN[
αNP

−1EN (a1I + b1S)
]
N,·


where [B]i,· indicates the i–th row of the matrix B.
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Thanks for the attention!
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Remarks (ill–posedness implies singularity)

• This result does not depend on the discretization:
we only need accurate operators and penalty terms.

• More generally, let K0,KN ∈ R(N+1)×(N+1) with
the first and last column nonzero, respectively.
Then

A = D2 +K0E0 (a0I + b0S) +KNEN (a1I + b1S) ,

is singular whenever (1) is satisfied.
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