Singularity of the discrete Laplacian operator

Andrea Alessandro Ruggiu Jan Nordström

Motivation

In the SBP–SAT framework, for unsteady initial boundary value problems we can usually state

continuous well–posedness \Rightarrow stable discretization

Such properties are related to the sign of the eigenvalues of spatial operators being nonpositive (or nonnegative), both in the continuous and discrete settings.

$$u_t + Lu = f, \ x \in \Omega, \ t > 0 \quad \rightarrow \quad \mathbf{v}_t + L_D \mathbf{v} = \mathbf{f}, \ t > 0.$$

 $\operatorname{eig}(L) \ge 0 \quad \Rightarrow \quad \operatorname{eig}(L_D) \ge 0.$

The continuous problem

Consider the one–dimensional Poisson equation with two boundary conditions

$$\begin{aligned} & -u_{xx} &= F(x), \quad 0 < x < 1, \\ L_0 u(0) &:= \left(a_0 + b_0 \frac{\partial}{\partial x}\right) u(0) &= g_0, \quad a_0, b_0 \in \mathbb{R}, \\ L_1 u(1) &:= \left(a_1 + b_1 \frac{\partial}{\partial x}\right) u(1) &= g_1, \quad a_1, b_1 \in \mathbb{R}. \end{aligned}$$

The solution to is not unique if, and only if,

$$a_0 \left(a_1 + b_1 \right) - a_1 b_0 = 0. \tag{1}$$

Proof

The solution consists of two parts

$$u(x) = \underbrace{c_0 + c_1 x}_{\text{homogeneous}} + \underbrace{u_p(x)}_{\text{particular}}, \quad c_0, c_1 \in \mathbb{R}, \qquad (2)$$

where $u_p(x) = u_p(F(x))$ does not depend on the boundary conditions.

By applying the boundary conditions to (2) leads to

$$E\begin{bmatrix} c_0\\ c_1\end{bmatrix} = \begin{bmatrix} a_0 & b_0\\ a_1 & a_1 + b_1\end{bmatrix} \begin{bmatrix} c_0\\ c_1\end{bmatrix} = \begin{bmatrix} g_0 - L_0 u_p(0)\\ g_1 - L_1 u_p(1)\end{bmatrix}.$$

The condition det(E) = 0 yields (1).

Recalling some theory

Let $T \in \mathbb{R}^{m \times n}$. Then we define

Definition (Rank and Nullspace of a matrix)

The number of linearly independent rows (or columns) of T is said to be the rank of T and it is denoted rk(T). The null space of T is the set

$$nul(T) = \{ \mathbf{w} \in \mathbb{R}^n : T\mathbf{w} = \mathbf{0} \}$$

Remark (Subadditivity of the rank)

The rank is *subadditive*: if A and B are matrices of the same dimensions, then

$$rk(A+B) \le rk(A) + rk(B).$$

Theorem (Rank–nullity theorem)

The rank and dimension of the null space of T sums to the number of its columns, i.e.

$$rk\left(T\right) + dim\left(nul\left(T\right)\right) = n.$$

Therefore a square matrix is non-singular if, and only if, $\dim(nul(T)) = 0$.

Recalling Summation–By–Parts operators

Definition

 $D = P^{-1}Q$ is a first-derivative SBP operator if $Q + Q^T = B = diag(-1, 0, ..., 0, 1)$ and P is a symmetric positive definite matrix.

Definition

 $D_2 = P^{-1} \left(-S^T M + B\right) S$ is a second-derivative SBP operator if M is positive semidefinite and S approximates the first derivative operator at the boundaries.

The discrete problem

Simultaneous–Approximation–Terms (SAT) enforces the boundary conditions weakly.

The SBP–SAT approximation of the Poisson problem can be formally written as

$$-D_2 \mathbf{v} = \mathbf{F} + SAT, \quad D_2 \in \mathbb{R}^{(N+1) \times (N+1)}$$
(3)

where SAT collects the penalty terms of the discretization.

Consider the following SAT term

$$SAT = -\alpha_0 P^{-1} E_0 \left[(a_0 I + b_0 S) \mathbf{v} - \mathbf{g}_0 \right] + \alpha_N P^{-1} E_N \left[(a_1 I + b_1 S) \mathbf{v} - \mathbf{g}_1 \right],$$

where we have used $\alpha_0, \alpha_N \in \mathbb{R}, E_0 = diag(1, 0, \dots, 0),$ $E_N = diag(0, \dots, 0, 1) \in \mathbb{R}^{(N+1) \times (N+1)}.$

The discrete Poisson problem is $A\mathbf{v} = \mathbf{G}$, where

$$A = D_2 - \alpha_0 P^{-1} E_0 \left(a_0 I + b_0 S \right) + \alpha_N P^{-1} E_N \left(a_1 I + b_1 S \right).$$

Note: \mathbf{G} is independent of \mathbf{v} .

A reasonable assumption

We require that

$$\mathbf{1} = [1, \dots, 1]^T \Rightarrow D\mathbf{1} = \mathbf{0}, \quad D_2\mathbf{1} = \mathbf{0}, \\
\mathbf{x} = h [0, \dots, N]^T \Rightarrow D\mathbf{x} = \mathbf{1}, \quad D_2\mathbf{x} = \mathbf{0}.$$
(4)

Ill-posedness implies singularity

Theorem : ill–posedness \Rightarrow A singular

Proof: Let $\mathbf{y} = \beta \mathbf{1} + \gamma \mathbf{x}$, with $(\beta, \gamma) \in \mathbb{R}^2 \setminus \{(0, 0)\}$. Since $D_2 \mathbf{y} = \mathbf{0}$ and P is positive definite, we can write

$$A\mathbf{y} = \mathbf{0} \quad \Rightarrow \quad \begin{aligned} (a_0 I + b_0 S) \, \mathbf{y} &= 0, \\ (a_1 I + b_1 S) \, \mathbf{y} &= 0. \end{aligned}$$

Substituting \mathbf{y} and using (4), we get

$$E\begin{bmatrix}\beta\\\gamma\end{bmatrix} = \begin{bmatrix}a_0 & b_0\\a_1 & a_1 + b_1\end{bmatrix}\begin{bmatrix}\beta\\\gamma\end{bmatrix} = \begin{bmatrix}0\\0\end{bmatrix} \stackrel{det(E)=0}{\Rightarrow} (1).$$

Numerical check

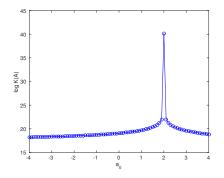


Figure: $b_0 = 4$, $a_1 = 1$, $b_1 = 1$. With this choice (1) is satisfied for $a_0 = 2$.

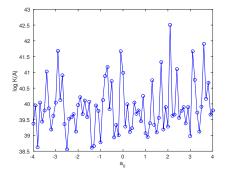


Figure: $b_0 = 0$, $a_1 = 1$, $b_1 = -1$. With this choice (1) is satisfied for any $a_0 \in \mathbb{R}$.

Well-posedness implies nonsingularity?

If the converse proposition holds, it is equivalent to

well–posedness \Rightarrow A nonsingular

Each SAT term has rank 1: by subadditivity we get

$$rk(A) \leq rk(D_{2}) + rk(\alpha_{0}P^{-1}E_{0}(a_{0}I + b_{0}S)) + rk(\alpha_{N}P^{-1}E_{N}(a_{1}I + b_{1}S)) = rk(D_{2}) + 2.$$

Therefore

 $rk(D_2) < N-1 \Rightarrow A \text{ singular } \forall a_0, a_1, b_0, b_1 \in \mathbb{R}.$

However, even by assuming $rk(D_2) = N - 1$, we cannot conclude that A is nonsingular $(rk(A) \le N + 1)$. We need:

Assumption

The matrix P is diagonal. Moreover, the matrix $D_{2,CEN} \in \mathbb{R}^{(N-1) \times (N+1)}$ such that

$$D_2 = \begin{bmatrix} \mathbf{d}_{20} \\ D_{2,CEN} \\ \mathbf{d}_{2N} \end{bmatrix} \in \mathbb{R}^{(N+1) \times (N+1)}$$

has full rank.

Theorem : well–posedness \Rightarrow A nonsingular

Idea of the proof:

- If *P* is diagonal, then the SAT terms consist of only one nonzero row each.
- It can be shown that

$$det\left(A\right) = det \begin{bmatrix} -\left[\alpha_{0}P^{-1}E_{0}\left(a_{0}I + b_{0}S\right)\right]_{0,\cdot} \\ D_{2,CEN} \\ \left[\alpha_{N}P^{-1}E_{N}\left(a_{1}I + b_{1}S\right)\right]_{N,\cdot} \end{bmatrix}$$

where $[B]_{i}$ indicates the i-th row of the matrix B.

16

Thanks for the attention!

Short bibliography

- M. Svärd, J. Nordström, Review of Summation-By-Parts Schemes for Initial-Boundary-Value Problems, Journal of Computational Physics, Volume 268, pp. 1738, 2014
- N. Loehr, Advanced Linear Algebra, Chapman and Hall/CRC, 1st edition, 2014.

M. H. Carpenter, D. Gottlieb, S. Abarbanel, Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: Methodology and application to high-order compact schemes, Journal of Comput. Physics, Vol 111 No. 2, 1994.

Remarks (ill-posedness implies singularity)

• This result does not depend on the discretization: we only need accurate operators and penalty terms.

• More generally, let $K_0, K_N \in \mathbb{R}^{(N+1) \times (N+1)}$ with the first and last column nonzero, respectively. Then

 $A = D_{2} + K_{0}E_{0}(a_{0}I + b_{0}S) + K_{N}E_{N}(a_{1}I + b_{1}S),$

is singular whenever (1) is satisfied.

Andrea Alessandro Ruggiu Jan Nordström www.liu.se

