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Introduction

Consider the incompletely parabolic system of equations

ut + Aux − εBuxx = F (x , t, ξ) 0 ≤ x ≤ 1, t ≥ 0
H0u = g0(t, ξ) x = 0, t ≥ 0
H1u = g1(t, ξ) x = 1, t ≥ 0

u(x , 0, ξ) = f (x , ξ) 0 ≤ x , t = 0.

(1)

The solution is represented by the vector u = u(x , t, ξ) where, ξ is
a random variable. A and B are symmetric matrices. H0 and H1
are the boundary operators. F , f , g0 and g1 are the data to the
problem.
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Derivation of well-posed boundary conditions

By ignoring the forcing function F , we multiply (1) by uT and
integrat in space to obtain,

‖u‖2t + 2ε
∫ 1

0
uT
x Bux dx =

[
uTAu − 2εuTBux

]
x=0

−
[
uTAu − 2εuTBux

]
x=1 ,

(2)

where ‖u‖2 =
∫

Ω uTu dx . We now need to bound (2) by imposing
boundary conditions.
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Derivation of well-posed boundary conditions

Lets consider only the left boundary terms (LBT ), which can be
diagonalized as

LBT =
[
uTAu − 2εuTBux

]
x=0

= W T
0 ΛDW0, (3)

since A and B are symmetric. Let W0 = (W +
0 ,W

−
0 ), hence (3) can

be written as

LBT = (W +
0 )T Λ+

D(W +
0 ) + (W−

0 )T Λ−
D(W−

0 ). (4)

Next, we impose the following general boundary condition in (4)

W +
0 − R0W−

0 = 0, (5)
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Derivation of well-posed boundary conditions

The imposition of (5) in (4) gives

LBT = (W−
0 )T (RT

0 Λ+
DR0 + Λ−

D)(W−
0 ). (6)

From (6) we conclude that

RT
0 Λ+

DR0 + Λ−
D ≤ 0. (7)

Finally, we end up with the general boundary operator

H0 =

[
XT

+ − εB+XT ∂
∂x

εZT
− XT ∂

∂x

]
− R0

[
XT
− − εB−XT ∂

∂x
εZT

+ XT ∂
∂x

]
. (8)

where R0 is chosen such that (7) holds.
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The study of the stochastic properties

We now focus on the stochastic properties of (1), formulated as,

ut + Aux − εBuxx = F (x , t, ξ) = E[F ](x , t) + δF (x , t, ξ)
H0u(0, t, ξ) = g0(t, ξ) = E[g0](t) + δg0(t, ξ)
H1u(1, t, ξ) = g1(t, ξ) = E[g1](t) + δg1(t, ξ)

u(x , 0, ξ) = f (x , ξ) = E[f ](x) + δf (x , ξ).
(9)

Taking the expected value of (9) and defining v = E[u] we obtain,

vt + Avx − εBvxx = E[F ](x , t)
H0v(0, t) = E[g0](t)
H1v(1, t) = E[g1](t)

v(x , 0) = E[f ](x).

(10)
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The study of the stochastic properties

Next, the difference between (9) and (10) together with the
definition e = u − v gives,

et + Aex − εBexx = δF (x , t, ξ)
H0e(0, t, ξ) = δg0(t, ξ)
H1e(1, t, ξ) = δg1(t, ξ)

e(x , 0, ξ) = δf (x , ξ).

(11)

The energy method applied to (11) gives (ignoring the right
boundary)

‖e‖2t + 2ε
∫ 1

0
eT
x Bex dx =

[
E−

0
δg0

]T [RT
0 Λ+

DR0 + Λ−
D RT

0 Λ+
D

(RT
0 Λ+

D)T Λ+
D

] [
E−

0
δg0

]
(12)
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The study of the stochastic properties

By taking the expected value of (12) and using the fact that

E[‖e‖2] = ‖Var [u]‖1 , (13)

we find

‖Var [u]‖t + 2E[ε

∫ 1

0
eT
x Bex dx ] = E[(E−

0 )T Λ−
D(E−

0 )]

+ E[(δg−
0 )T Λ+

D(δg−
0 )]

+ E[(R0δg+
0 )T Λ+

D(R0δg+
0 )]

− 2E[(R0δg+
0 )T Λ+

D(δg−
0 )]

+ E[(δg−
0 − R0δg+

0 + E+
0 )T Λ+

D(R0E−
0 )].

(14)

(14) implies that different types of boundary conditions (choices of
R0) gives different variance decay of the solution.
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The study of a model problem

Consider the simplest possible version of the general problem (1),
where,

u =

[
u1
u2

]
, A =

[
0 1
1 0

]
, B =

[
0 0
0 1

]
(15)
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The study of a model problem

For (15), the continuous boundary conditions are

W +
0 − R0W−

0 = g+
0 − R0g−

0 ,
W−

1 − R1W +
1 = g−

1 − R1g+
1 ,

(16)

where,

W +
0 =

[
+1 1

]
ux=0 − ε

[
0 1

]
(ux)x=0,

W−
0 =

[
−1 1

]
ux=0 + ε

[
0 1

]
(ux)x=0,

W−
1 =

[
−1 1

]
ux=1 + ε

[
0 1

]
(ux)x=1,

W +
1 =

[
+1 1

]
ux=1 − ε

[
0 1

]
(ux)x=1.
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Zero variance on the boundary

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

8

9

10

t

||V
ar

[u
]||

 

 
R

0
 = 0, R

1
 = 0

R
0
 = 0.5, R

1
 = 0.5

R
0
 = 0.5, R

1
 = 1

R
0
 = 0.75, R

1
 = 1

R
0
 = 1, R

1
 = 1

Figure : The L1-norm of the variance as a function of time for a normally
distributed ξ for characteristic and non-characteristic boundary conditions
when having perfect boundary knowledge.
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Decaying variance
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Figure : The L1-norm of the variance as a function of time for a normally
distributed ξ for characteristic and non-characteristic boundary conditions
when having decaying boundary data.
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Large non-decaying variance
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Figure : The L1-norm of the variance as a function of time for a normally
distributed ξ for characteristic and non-characteristic boundary conditions
when having large non-decaying boundary data.
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Summary

Summary
Well-posed boundary conditions for an incompletely parabolic
system of equations has been derived.
The problem has been discretized using a finite difference
scheme based on the SBP-SAT technique.
An expression showing how the variance depends on the
boundary conditions imposed has been derived.
Numerical results show that generalized characteristic
boundary conditions are generally a good choice in terms of
variance minimization.


