Coupling Requirements for Well Posed and Stable Multi-Physics Problems

By

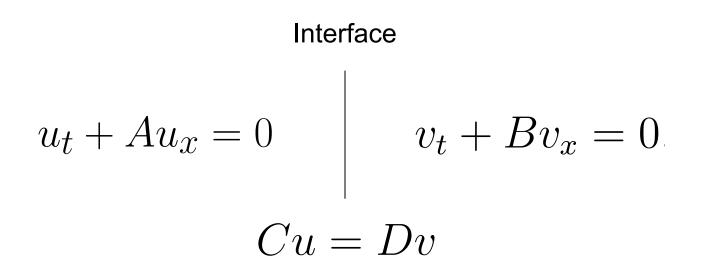
Fatemeh Ghasemi & Jan Nordström

Division of Computational Mathematics, Department of Mathematics, Linköping University, SE-581 83 Linköping, Sweden

What can be coupled?

- Hyperbolic eqs coupled to hyperbolic eqs.
- Parabolic eqs coupled to parabolic eqs.
- Hyperbolic eqs coupled to parabolic eqs will create indefinite boundary terms and ruin energy stability.
- Coupling of m equations to n equations, m=n rare.
- General principles guiding these coupling procedures?
- What can be coupled?
- How about well-posedness?
- Conservation? What does that mean in the general case?
- The dual/adjoint problem?

A model problem



With A, B given, what is C, D?

A simplified model problem

We will consider the following system,

$$u_t + Au_x = 0, \quad -1 \le x \le 0, \quad t > 0,$$

$$u(x,0) = f(x),$$
 (1)

and the scalar equation

$$v_t + Bv_x = 0, \qquad 0 \le x \le 1, \qquad t > 0,$$

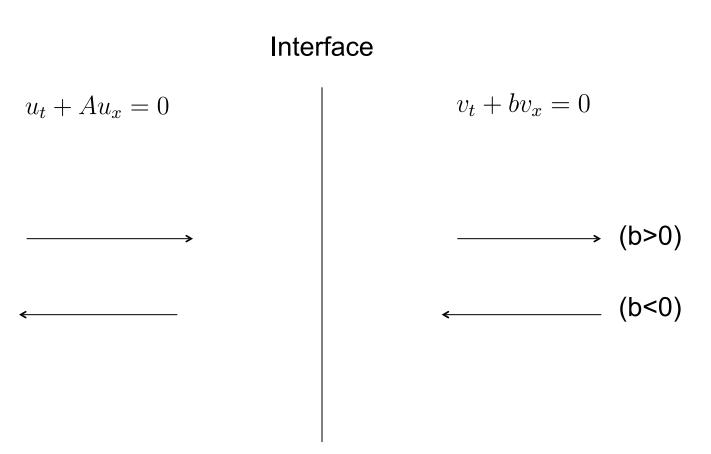
 $v(x, 0) = g(x).$ (2)

 $u = (u_1, u_2)^T$ a vector of unknowns, $f(x) = (f_1(x), f_2(x))^T$ a vector of given data

$$A = \left[\begin{array}{cc} 0 & a \\ a & 0 \end{array} \right], a > 0.$$

Two boundary/interface conditions are needed for the system (1) while equation (2) needs one boundary/interface condition.

Wave propagation



(b>0) require two interface conditions (b<0) require one interface condition

Energy

Applying the energy method to both equations

$$\frac{d}{dt}(\|u\|_2^2 + \alpha \|v\|_2^2) = -u^T A u|_{x=0} + \alpha b v^2|_{x=0} = w^T E w, \qquad (3)$$

 $\boldsymbol{\alpha}$ a positive free weight, $\boldsymbol{w} = [u_1, u_2, v]^T$

$$E = \begin{bmatrix} 0 & -a & 0 \\ -a & 0 & 0 \\ 0 & 0 & \alpha b \end{bmatrix}$$

The eigenvalues of E are $\{a, -a, \alpha b\}$. If b < 0, \Rightarrow one of the eigenvalues is positive \Rightarrow one condition at x = 0If b > 0, \Rightarrow two of the eigenvalues are positive \Rightarrow two conditions at x = 0

The boundary matrix

In order to couple the problems we need at least one accuracy condition. Let

$$v = C^T u, \quad C = [c_1, c_2]^T.$$
 (4)

The relation (4) inserted in equation (3) leads to

$$\frac{d}{dt}(\|u\|_2^2 + \alpha \|v\|_2^2) = u^T(0,t)Du(0,t),$$

 $D = (\alpha b C C^T - A)$. The characteristic polynomial related to the eigenvalues λ of D is

$$\lambda^2 - \alpha b(c_1^2 + c_2^2)\lambda + 2\alpha a b c_1 c_2 - a^2.$$

Eigenvalues and coupling conditions

$$\lambda_{1,2} = -s_1 \pm \sqrt{s_1^2 - s_2}.$$
 $2s_1 = -\alpha b(c_1^2 + c_2^2)$ and $s_2 = 2\alpha a b c_1 c_2 - a^2$

$$b < 0 \Rightarrow s_1 > 0$$

$$c_1 c_2 < a/(2\alpha b) \Rightarrow s_2 > 0$$

$$c_1 c_2 > a/(2\alpha b) \Rightarrow s_2 < 0$$

Only negative eigenvalues , OK, But need $c_1 c_2 < 0$

One positive eigenvalue, Not OK

One positive eigenvalue, OK, But need a boundary condition

Two positive eigenvalues , Not OK but can always be avoided by choosing a small α

$$b > 0 \Rightarrow s_1 < 0$$

 $c_1 c_2 < a/(2\alpha b) \Rightarrow s_2 < 0$
 $c_1 c_2 > a/(2\alpha b) \Rightarrow s_2 > 0$

Tentative conclusions

$$v = C^T u, \quad C = [c_1, c_2]^T$$

The accuracy condition leads to a well posed problem only for certain c_1 and c_2

b < 0: An energy estimate (negative semi-definite eigenvalues of D) if c_1 and c_2 have opposite signs. Only the interface condition required.

b > 0: An energy estimate for all values of c_1 and c_2 . One additional condition, (a boundary condition) is required.

The numerical approximation

First, we consider b < 0. The semi-discrete SBP-SAT formulations of (1) and (2) are,

$$\mathbf{u}_t + (D_u \otimes A)\mathbf{u} = (P_u^{-1}E_N^u \otimes \Sigma)(C^T \tilde{u}_N - v_0)e_N^u,$$

$$\mathbf{v}_t + bD_v\mathbf{v} = P_v^{-1}\sigma(v_0 - C^T \tilde{u}_N)e_0^v.$$
 (5)

 $D_{u,v} = P_{u,v}^{-1}Q_{u,v}$ are the difference operators, $P_{u,v}$ are positive definite matrices and $Q_{u,v}$ satisfy $Q_{u,v} + Q_{u,v}^T = diag[-1, \cdots, 1]$ and

$$\mathbf{u} = (u_{10}, u_{20}, \cdots , u_{1N}, u_{2N}), \qquad \mathbf{v} = (v_0, \cdots, v_M).$$

The vectors $e_N^u = (0, \dots, 0, 1, 1)^T$ and $e_0^v = (1, \dots, 0)^T$ are $2N \times 1$ and $M \times 1$, respectively. $E_N^u = diag[0, \dots, 1]$ and $E_0^v = diag[1, \dots, 0]$ are $N \times N$ and $M \times M$, respectively. The penalty matrix Σ is given by

$$\Sigma = \left[\begin{array}{cc} \sigma_1 & \sigma_2 \\ \sigma_3 & \sigma_4 \end{array} \right],$$

 σ is penalty parameter, and also, $\tilde{u}_N = [u_{1N}, u_{2N}]^T$.

Next, consider b > 0. The semi-discrete SBP-SAT formulations of (1) and (2) are

$$\mathbf{u}_{t} + (D_{u} \otimes A)\mathbf{u} = (P_{u}^{-1}E_{N}^{u} \otimes \Sigma)(C^{T}\tilde{u}_{N} - v_{0})e_{N}^{u} + (P_{u}^{-1}E_{N}^{u} \otimes \Xi\tilde{H})(\mathbf{u} - e_{N}^{u} \otimes \tilde{h}),$$

$$\mathbf{v}_{t} + bD_{v}\mathbf{v} = P_{v}^{-1}\sigma(v_{0} - C^{T}\tilde{u}_{N})e_{0}^{v}.$$
(6)

where the penalty matrix Ξ and \tilde{H} are given by

$$\Xi = \begin{bmatrix} \chi_1 & \chi_2 \\ \chi_3 & \chi_4 \end{bmatrix}, \quad \tilde{H} = \begin{bmatrix} 1 & -R_r \\ 0 & 0 \end{bmatrix} Y^T.$$

The boundary data \tilde{h} is defined as $\tilde{h} = [0, h]^T$.

Stability

First we consider b < 0. The discrete energy method is applied to (5) yields

$$\frac{d}{dt}(\|\mathbf{u}\|_{P_u\otimes I}^2 + \alpha_d \|\mathbf{v}\|_{P_v}^2) = -\tilde{u}_N^T A \tilde{u}_N + \alpha_d b v_0^2 + 2\tilde{u}_N^T \Sigma H + 2\alpha_d \sigma v_0 (v_0 - C^T \tilde{u}_N).$$
(7)

 α_d is a positive weight and $H = [C^T \tilde{u}_N - v_0, C^T \tilde{u}_N - v_0]^T$. In order to mimic the continuous case, we choose $\Sigma = \alpha b/2 \begin{bmatrix} 0 & C \end{bmatrix}$. By inserting that into (7) we get

$$\frac{d}{dt}(\|\mathbf{u}\|_{P_u\otimes I}^2 + \alpha_d \|\mathbf{v}\|_{P_v}^2) = \tilde{u}_N^T D\tilde{u}_N + \alpha_d v_0^2 (b + 2\sigma) - \sigma v_0 C^T \tilde{u}_N (\alpha b + 2\alpha_d \sigma).$$
(8)

If we choose $\sigma = -\alpha b/2\alpha_d$, for $\alpha_d \leq \alpha$ the right-hand side of (8) will be bounded due to the continuous result above.

Next, we consider b > 0 and let h(t) = 0. Multiplying (6) by $\mathbf{u}^T(P_u \otimes I)$ and $\mathbf{v}^T P_v$ leads to

$$\frac{d}{dt}(\|\mathbf{u}\|_{P_u\otimes I}^2 + \alpha_d \|\mathbf{v}\|_{P_v}^2) \leq \tilde{u}_N^T (D + \Xi \tilde{H} + (\Xi \tilde{H})^T) \tilde{u}_N,$$

where we have chosen Σ and σ as for the case b < 0.

By choosing

$$\Xi = Y \left[\begin{array}{cc} -\lambda^+ & 0\\ 0 & 0 \end{array} \right],$$

$$\frac{d}{dt}(\|\mathbf{u}\|_{P_u\otimes I}^2 + \alpha_d \|\mathbf{v}\|_{P_v}^2) \le 0,$$

for $\alpha_d \geq \alpha$.

Accuracy

The analytical solution

$$u_1(x,t) = u_2(x,t) = \cos(2\pi(x-t))v(x,t) = \sin(3\pi(x-bt))$$

The rate of convergence

$$q_u = \ln\left(\frac{\|(\mathbf{u}_1^{N_1}, \mathbf{u}_2^{N_1}) - (u_1, u_2)\|_{P_u \otimes I}}{\|(\mathbf{u}_1^{N_2}, \mathbf{u}_2^{N_2}) - (u_1, u_2)\|_{P_u \otimes I}}\right) / \ln\left(\frac{N_1}{N_2}\right), q_v = \ln\left(\frac{\|\mathbf{v}^{N_1} - v\|_{P_v}}{\|\mathbf{v}^{N_2} - v\|_{P_v}}\right) / \ln\left(\frac{N_1}{N_2}\right)$$

	SBP21		SBP42		SBP63		SBP84	
N	error	rate	error	rate	error	rate	error	rate
20	2e-2	-	2e-3	-	2e-3	-	1e-3	_
40	6e-3	1.877	3e-4	3.006	1e-4	4.035	3e-5	5.376
80	1e-3	2.046	3e-5	3.242	8e-6	4.224	8e-7	5.392
160	4e-4	1.985	3e-6	3.052	4e-7	4.470	2e-8	5.113
320	1e-4	2.004	4e-7	3.021	2e-8	4.375	6e-10	5.091
640	2e-5	1.998	6e-8	3.013	1e-9	4.077	2e-11	5.047

Table 1: error and rate q_u for b < 0.

Summary and future work

- We have discussed/questioned whether there are general principles governing coupled problems.
- As an intial study, a simple model problem was investigated.
- It was shown that the coupling (or accuracy) conditions had to satisfy certain conditions, otherwise well-posedness could not be obtained.
- This implies that some problems can be coupled, and others not.
- Stability and accuracy followed immidiately from the well-posedness results using the SBP-SAT technique.
- Future work: investigation regarding conservation and duality.
- Future work: the relation between well-posednes, stability, conservation and duality.

Thank you for listening !

www.liu.se