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What can be coupled?

Hyperbolic egs coupled to hyperbolic egs.
Parabolic egs coupled to parabolic egs.

Hyperbolic eqs coupled to parabolic egs will create
indefinite boundary terms and ruin energy stability.

Coupling of m equations to n equations, m=n rare.
General principles guiding these coupling procedures?
What can be coupled?

How about well-posedness?

Conservation? What does that mean in the general
case?

The dual/adjoint problem?



A model problem

Interface

Ut—l—Aux:O Ut—I—B’Ux:O

Cu = Dv

With A, B given, what is C, D?



A simplified model problem

We will consider the following system,

uy + Au, = 0, -1 <2<0, t >0, (1)
u(z,0) = f(z),
and the scalar equation
vy + Bv, = 0, 0<z<1, t >0, (2)
v(z,0) = g(z).

u = (uy,uz)” a vector of unknowns,
f(z) = (fi(z), fa(x))T a vector of given data

0 a
A_[a O],a>0.

Two boundary /interface conditions are needed for the system (1) while equation (2) needs
one boundary /interface condition.
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Wave propagation

Interface

ut—l—Aux:O Ut‘|—b’U$:O

v

> (0>0)

(b<0)

A
A

(b>0) require two interface conditions
(b<0) require one interface condition



Energy

Applying the energy method to both equations
d

—(llullz + alloll3) = —u" Aulemg + abv®|omp = w' Buw, (3)

a a positive free weight, w = [uy, ug, v]*

0 —a O
E=| —-a 0 0
0 0 ab

The eigenvalues of E are {a, —a, ab}.
If b < 0, = one of the eigenvalues is positive = one condition at x = 0
If b > 0, = two of the eigenvalues are positive = two conditions at x = 0



he boundary matrix

In order to couple the problems we need at least one accuracy condition. Let
v=C", C=]lc,c]". (4)
The relation (4) inserted in equation (3) leads to

d
7 (llullz + aloll3) = w0, £) Du(0,1),

D = (abCCT — A). The characteristic polynomial related to the eigenvalues A of D is

N — ab(c] + )\ + 2aabeycy — a’.

251 = —ab(c? + ¢3) and sy = 2aabcycy — a?
)\1,2 - —5 + S% — 59



Eigenvalues and coupling conditions

Mp=—s1E4/s1 —s2. 25 = —ab(cd + ¢3) and sy = 2aabeicy — a?

c1co < a/(2ab) = s; >0  Only negative eigenvalues , OK,

b<0$81>0 But need c¢jcp < 0
C1Co > a/(QOéb) = 59 < 0 One positive eigenvalue , Not OK

One positive eigenvalue , OK,

cicy < af(2ab) = 52 <0 Byt need a boundary condition
b>0=5 <0

Two positive eigenvalues , Not OK
but can always be avoided by
choosing a small «

c1ca > a/(2ab) = s9 > 0



Tentative conclusions

v==CM, C=lc,eclt

The accuracy condition leads to a well posed problem only for certain ¢; and cs

h<(: An energy estimate (negative semi-definite eigenvalues of D) if ¢; and ¢
"have opposite signs. Only the interface condition required.

b> 0 An energy estimate for all values of ¢; and cy. One additional condition,
" (a boundary condition) is required.



The numerical approximation

First, we consider b < 0. The semi-discrete SBP-SAT formulations of (1) and (2) are,

w + (D, ® A)ju = (P, B} @ B)(CTay — vo)el,
v, +bD,v = Pv_la(vo — CT&N)GS. (5)

Dy =P, 3@1“, are the difference operators, P, , are positive definite matrices and @),
satisfy Qu,., + QL, = diag[—1,--- ,1] and

u = (uw,Uzo, : "U1N7U2N>; vV = (on T 7UM>-

The vectors €% = (0,---,0,1,1)" and ¢} = (1,---,0)" are 2N x 1 and M x 1, respectively.
EY = diagl0,--- 1] and EJ = diag[l,--- ,0] are N x N and M x M, respectively. The
penalty matrix X is given by
Y — [ 01 02 ] ’
O3 04

o is penalty parameter, and also, @y = [u1y, uan]” .



Next, consider b > 0. The semi-discrete SBP-SAT formulations of (1) and (2) are

w + (D, ® A)u= (PEL @ 2)(CTay —vo)ey + (PLEL @ ZH)(u — €% @ ),
v, +bD,v = P; 'o(vg — CTay)el. (6)

where the penalty matrix = and H are given by

- X1 X2 ~ 1 —R, T
== , H= Y-
R e

The boundary data h is defined as h = [0, h]”.



Stability

First we consider b < 0. The discrete energy method is applied to (5) yields

d o . .
%(Hu\@uw + odeVH%v) = — u?(,AuN + ozdbvg + Qu%ZH + 2aq0v0(vg — C’TuN). (7)

g is a positive weight and H = [CTay — v, CTuy — vg]t.
In order to mimic the continuous case, we choose > = ab/2 [ 0 C } . By inserting that
into (7) we get

d

a(HuH%@I + ad||v||%gv) :&%D&N + ozdvg(b + 20) — UUOC’T&N(Ozb + 2040). (8)

If we choose 0 = —ab/2ay, for ay < a the right-hand side of (8) will be bounded due to
the continuous result above.



Next, we consider b > 0 and let h(t) = 0. Multiplying (6) by u’ (P, ® I) and v!' P,
leads to

d

—(lullb,er + aallvilp,) <iy(D +EH + (ZH)" )i,

where we have chosen Y. and o as for the case b < 0.

By choosing

— —AT 0
[ 9]

d
([l o + adllvliz,) <0,

for ag > «.



Accuracy

The analytical solution
uy(x,t) = ug(x,t) = cos(2m(xz — t))v(x,t) = sin(3n(x — bt))

The rate of convergence

N N N
Lud) — N - N
¢y, = In (H<u11v ,u?V ) (U17U2)Hpu®1)/ln (—1),% = In (HVN UHP”)/ln (—1)
H(Ul 2,1122) — <u17u2)HPu®I N2 ||V 2 — ’UHPU N2

SBP21 SBP42 SBP63 SBP84
N error rate error rate error rate error rate
20 2e-2 2e-3 2e-3 le-3 -

40 Ge-3 1.877 Je-4 3.006 le-4 4.035 3e-5 5.376
80 le-3 2.046 3e-5 3.242 8e-6 4.224 8e-7 5.392
160 4e-4 1.985 3e-6 3.052 de-7 4.470 2e-8 5.113
320 le-4 2.004 4e-7 3.021 2e-8 4.375 Ge-10 5.091
640 2e-5 1.998 Ge-8 3.013 le-9 4.077 2e-11 5.047

Table 1: error and rate ¢, for b < 0.



Summary and future work

We have discussed/questioned whether there are general principles
governing coupled problems.

As an intial study, a simple model problem was investigated.

It was shown that the coupling (or accuracy) conditions had to satisfy
certain conditions, otherwise well-posedness could not be obtained.

This implies that some problems can be coupled, and others not.

Stability and accuracy followed immidiately from the well-posedness
results using the SBP-SAT technique.

Future work: investigation regarding conservation and duality.

Future work: the relation between well-posednes, stability, conservation
and duality.



Thank you for listening !
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