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Formulat ion

We consider well-posed init ial boundary value problems of the form,

ut + f x + gy = h1(x, t), Lu = h2(x, t) x ∈ δΩ, u(x, 0) = h3(x).

Both the finite difference and finite volume approximations lead to,

PUt + Qx F + QyG = H1(h1) +H2(Lu − h2), U(0) = H3. (0.1)



‹Nr.›

What can be coupled?

▪ Hyperbolic eqs coupled to hyperbolic eqs. 
▪ Parabolic eqs coupled to parabolic eqs. 
▪ Hyperbolic eqs coupled to parabolic eqs will create 

indefinite boundary terms and ruin energy stability. 
▪ Coupling of m equations to n equations, m=n rare.  
▪ General principles guiding these coupling procedures? 
▪ What can be coupled?  
▪ How about well-posedness? 
▪ Conservation? What does that mean in the general 

case?  
▪ The dual/adjoint problem?



‹Nr.›

A model problem

Interface

J. Nordström, F. Ghasemi

We will investigate the problems mentioned above and generalize the investigation in
[2, 3] where we derived the coupling conditions by only demanding a well posed problem.
Coupling of hyperbolic PDEs of di↵erent size at the interface will be our primary focus.
Once the coupling conditions are known for the continuous multi-physics problem we will
discretize using high order finite di↵erences on summation-by-parts form and include the
coupling conditions weakly using the SAT technique [4, 5].

2 THE MODEL PROBLEM

We will consider the following system,

ut + Aux = 0, �1  x  0, t > 0,
(1)

u(x, 0) = f (x),
and the scalar equation

v
t

+ bv
x

= 0, 0  x  1, t > 0, (2)

v(x, 0) = g(x).

In (1), u = (u1, u2)T is a vector of unknowns, f(x) = (f1(x), f2(x))T is a vector of given
data and for simplicity we choose

A =


0 a
a 0

�
, a > 0.

Two boundary/interface conditions are needed for the system (1) while equation (2) needs
one boundary/interface condition.

2.1 The interface conditions

We apply the energy method to both equations and add them together to get

d

dt
(kuk22 + ↵kvk22) = �uTAu|

x=0 + ↵bv2|
x=0 = wTEw,

where ↵ is positive free weight, w = [u1, u2, v]T and E is

E =

2

4
0 �a 0
�a 0 0
0 0 ↵b

3

5 . (3)
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In (3), the boundary terms at the outer boundaries x = ±1 are ignored. The eigenvalues
of E are {a,�a,↵b}. If b < 0, one of the eigenvalues is positive and we need one condition
at x = 0, otherwise we need two conditions.
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Wave propagation

(b>0)

(b<0)

(b>0) require two interface conditions 
(b<0) require one interface condition

Interface
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We will investigate the problems mentioned above and generalize the investigation in
[2, 3] where we derived the coupling conditions by only demanding a well posed problem.
Coupling of hyperbolic PDEs of di↵erent size at the interface will be our primary focus.
Once the coupling conditions are known for the continuous multi-physics problem we will
discretize using high order finite di↵erences on summation-by-parts form and include the
coupling conditions weakly using the SAT technique [4, 5].

2 THE MODEL PROBLEM

We will consider the following system,

u
t

+ Au
x

= 0, �1  x  0, t > 0, (1)

u(x, 0) = f(x),

and the scalar equation

v
t

+Bv
x

= 0, 0  x  1, t > 0, (2)

v(x, 0) = g(x).

u = (u1, u2)T a vector of unknowns,
f(x) = (f1(x), f2(x))T a vector of given data

A =


0 a
a 0

�
, a > 0.

Two boundary/interface conditions are needed for the system (1) while equation (2) needs
one boundary/interface condition.

With A,B given, what is C,D?

2.1 The interface conditions

Applying the energy method to both equations

d

dt
(kuk22 + ↵kvk22) = �uTAu|

x=0 + ↵bv2|
x=0 = wTEw, (3)

↵ a positive free weight, w = [u1, u2, v]T

E =

2

4
0 �a 0
�a 0 0
0 0 ↵b

3

5 .

The eigenvalues of E are {a,�a,↵b}.
If b < 0, ) one of the eigenvalues is positive ) one condition at x = 0
If b > 0, ) two of the eigenvalues are positive ) two conditions at x = 0
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The boundary matrix
J. Nordström, F. Ghasemi

In order to couple the problems we need at least one accuracy condition. Let

v = CTu, C = [c1, c2]
T . (4)

The relation (4) inserted in equation (3) leads to

d

dt
(kuk22 + ↵kvk22) = uT (0, t)Du(0, t),

D = (↵bCCT � A). The characteristic polynomial related to the eigenvalues � of D is

�2 � ↵b(c21 + c22)�+ 2↵abc1c2 � a2.

Let 2s1 = �↵b(c21 + c22) and s2 = 2↵abc1c2 � a2,
+

�1,2 = �s1 ±
q

s21 � s2. (5)

First we consider b < 0. This leads to a positive s1. If c1c2  a/2b↵, then s2 � 0 and
both roots of the characteristic polynomial are negative, which means that D is negative
definite. This means that if c1 and c2 have opposite sign, the coupled problems satisfy
an energy estimate for all choices of ↵. But if c1 and c2 have the same sign, the energy
estimate is not satisfied for any value of ↵. Consequently the coupled problems with the
interface condition v = CTu satisfy an energy estimate for b < 0 if and only if c1 and c2
have opposite signs.

Next, consider b > 0. This leads to negative s1 and at least one of the eigenvalues must
be positive, which means that we need an additional condition. As mentioned above, two
conditions are needed at x = 0. One of them is an interface condition and the other one
must be such that the right-hand side of (5) is negative semi-definite. We will refer to this
additional condition as a boundary condition. If c1c2  a/2b↵, then s2  0 and one of
the eigenvalues of D is positive (�+) and the other one is negative (��). Let D = Y ⇤Y T

and rewrite (5) as

d

dt
(kuk22 + ↵kvk22) = uT (0, t)(Y ⇤Y T )u(0, t),

where ⇤ = diag{�+,��} and Y is the matrix of eigenvectors to D. Let ⇤ = ⇤+ + ⇤�,
where ⇤+ = diag{�+, 0} and ⇤� = diag{0,��}. Furthermore we have D = D+ + D�

where D+ = Y ⇤+Y T and D� = Y ⇤�Y T . Then (7) leads to

d

dt
(kuk22 + ↵kvk22) = (Y Tu(0, t))T (⇤+ + ⇤�)(Y Tu(0, t)), (6)

The most general condition based on (7) is

(Y T

+ �R
r

Y T

� )u(0, t) = h(t), x = 0, (7)
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Eigenvalues and coupling conditions
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In order to couple the problems we need at least one accuracy condition. Let
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T . (6)

The relation (6) inserted in equation (4) leads to

d

dt
(kuk22 + ↵kvk22) = uT (0, t)Du(0, t), (7)

where D = (↵bCCT � A). The characteristic polynomial related to the eigenvalues � of
D is

�2 � ↵b(c21 + c22)�+ 2↵abc1c2 � a2. (8)

To simplify the following discussion we let 2s1 = �↵b(c21 + c22) and s2 = 2↵abc1c2 � a2,
which yields the roots

�1,2 = �s1 ±
q

s21 � s2. (9)

First we consider b < 0. This leads to a positive s1. If c1c2  a/2b↵, then s2 � 0 and
both roots of the characteristic polynomial are negative, which means that D is negative
definite. This means that if c1 and c2 have opposite sign, the coupled problems satisfy
an energy estimate for all choices of ↵. But if c1 and c2 have the same sign, the energy
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interface condition v = CTu satisfy an energy estimate for b < 0 if and only if c1 and c2
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Next, consider b > 0. This leads to negative s1 and at least one of the eigenvalues must
be positive, which means that we need an additional condition. As mentioned above, two
conditions are needed at x = 0. One of them is an interface condition and the other one
must be such that the right-hand side of (5) is negative semi-definite. We will refer to this
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First we consider b < 0. This leads to a positive s1. If c1c2  a/2b↵, then s2 � 0 and
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Next, consider b > 0. This leads to negative s1 and at least one of the eigenvalues must
be positive, which means that we need an additional condition. As mentioned above, two
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must be such that the right-hand side of (5) is negative semi-definite. We will refer to this
additional condition as a boundary condition. If c1c2  a/2b↵, then s2  0 and one of
the eigenvalues of D is positive (�+) and the other one is negative (��). Let D = Y ⇤Y T

and rewrite (5) as

d

dt
(kuk22 + ↵kvk22) = uT (0, t)(Y ⇤Y T )u(0, t),

where ⇤ = diag{�+,��} and Y is the matrix of eigenvectors to D. Let ⇤ = ⇤+ + ⇤�,
where ⇤+ = diag{�+, 0} and ⇤� = diag{0,��}. Furthermore we have D = D+ + D�

where D+ = Y ⇤+Y T and D� = Y ⇤�Y T . Then (5) leads to

d

dt
(kuk22 + ↵kvk22) = (Y Tu(0, t))T (⇤+ + ⇤�)(Y Tu(0, t)),

The most general condition based on (5) is

(Y T

+ �R
r

Y T

� )u(0, t) = h(t), x = 0,

2.2 The semi-discrete problem

Let A be an M ⇥ N matrix and B a P ⇥ R matrix. The Kronecker product of these
matrices is defined as

A⌦ B =

2

4
a11B · · · a1NB
· · · · · ·

a
M1B · · · a

MN

B

3

5 .

First, we consider b < 0. The semi-discrete SBP-SAT formulations of (1) and (2) are,

u
t

+ (D
u

⌦ A)u = (P�1
u

Eu

N

⌦ ⌃)(CT ũ
N

� v0)e
u

N

,

v
t

+ bD
v

v = P�1
v

�(v0 � CT ũ
N

)ev0. (5)

D
u,v

= P�1
u,v

Q
u,v

are the di↵erence operators, P
u,v

are positive definite matrices and Q
u,v

satisfy Q
u,v

+QT

u,v

= diag[�1, · · · , 1] and

u = (u10, u20, · · · u1N , u2N), v = (v0, · · · , vM).

The vectors eu
N

= (0, · · · , 0, 1, 1)T and ev0 = (1, · · · , 0)T are 2N⇥1 and M⇥1, respectively.
Eu

N

= diag[0, · · · , 1] and Ev

0 = diag[1, · · · , 0] are N ⇥ N and M ⇥M , respectively. The
penalty matrix ⌃ is given by

⌃ =


�1 �2

�3 �4

�
,

� is penalty parameter, and also, ũ
N

= [u1N , u2N ]T .
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Next, consider b > 0. The semi-discrete SBP-SAT formulations of (1) and (2) are

u
t

+ (D
u

⌦ A)u = (P�1
u

Eu

N

⌦ ⌃)(CT ũ
N

� v0)e
u

N

+ (P�1
u

Eu

N

⌦ ⌅H̃)(u� eu
N

⌦ h̃),

v
t

+ bD
v

v = P�1
v

�(v0 � CT ũ
N

)ev0.
(6)

where the penalty matrix ⌅ and H̃ are given by

⌅ =


�1 �2

�3 �4

�
, H̃ =


1 �R

r

0 0

�
Y T .

The boundary data h̃ is defined as h̃ = [0, h]T .

2.2.1 Stability conditions at the interface

First we consider b < 0. The discrete energy method is applied to (5) yields

d

dt
(kuk2

Pu⌦I

+ ↵
d

kvk2
Pv
) =� ũT

N

Aũ
N

+ ↵
d

bv20 + 2ũT

N

⌃H + 2↵
d

�v0(v0 � CT ũ
N

). (7)

↵
d

is a positive weight and H = [CT ũ
N

� v0, C
T ũ

N

� v0]T .
In order to mimic the continuous case, we choose ⌃ = ↵b/2

⇥
0 C

⇤
. By inserting that

into (6) we get

d

dt
(kuk2

Pu⌦I

+ ↵
d

kvk2
Pv
) =ũT

N

Dũ
N

+ ↵
d

v20(b+ 2�)� �v0C
T ũ

N

(↵b+ 2↵
d

�). (8)

If we choose � = �↵b/2↵
d

, for ↵
d

 ↵ the right-hand side of (7) will be bounded due to
the continuous result above.

Next, we consider b > 0 and let h(t) = 0. Multiplying (??) by uT (P
u

⌦ I) and vTP
v

leads to

d

dt
(kuk2

Pu⌦I

+ ↵
d

kvk2
Pv
) ũT

N

(D + ⌅H̃ + (⌅H̃)T )ũ
N

,

where we have chosen ⌃ and � as for the case b < 0.
By using Y Y T = I, we can rewrite the right-hand side of (13) as

ũT

N

(D + ⌅H̃ + (⌅H̃)T )ũ
N

=(Y T ũ
N

)T (⇤+ (Y T⌅H̃Y ) + (Y T⌅H̃Y )T )(Y T ũ
N

). (9)

Let ⌅̃ = Y T⌅ and choose ⌅ such that ⌅̃ = diag(�̃1, �̃2). We also use the following split,

(Y T ũ
N

) =


(Y T

+ ũ
N

)
(Y T

� ũ
N

)

�
. (10)
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Next, consider b > 0. The semi-discrete SBP-SAT formulations of (1) and (2) are
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Eu
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u
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v
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v
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where the penalty matrix ⌅ and H̃ are given by

⌅ =
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, H̃ =
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The boundary data h̃ is defined as h̃ = [0, h]T .

2.2.1 Stability conditions at the interface

First we consider b < 0. The discrete energy method is applied to (5) yields

d
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d
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N
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N
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⌃H + 2↵
d

�v0(v0 � CT ũ
N

). (7)

↵
d

is a positive weight and H = [CT ũ
N

� v0, C
T ũ

N

� v0]T .
In order to mimic the continuous case, we choose ⌃ = ↵b/2

⇥
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⇤
. By inserting that

into (6) we get
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N
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d

�). (8)
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d

, for ↵
d

 ↵ the right-hand side of (7) will be bounded due to
the continuous result above.

Next, we consider b > 0 and let h(t) = 0. Multiplying (??) by uT (P
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⌦ I) and vTP
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leads to
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) ũT
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(D + ⌅H̃ + (⌅H̃)T )ũ
N

,

where we have chosen ⌃ and � as for the case b < 0.
By using Y Y T = I, we can rewrite the right-hand side of (13) as

ũT

N

(D + ⌅H̃ + (⌅H̃)T )ũ
N

=(Y T ũ
N

)T (⇤+ (Y T⌅H̃Y ) + (Y T⌅H̃Y )T )(Y T ũ
N

). (9)

Let ⌅̃ = Y T⌅ and choose ⌅ such that ⌅̃ = diag(�̃1, �̃2). We also use the following split,

(Y T ũ
N

) =


(Y T

+ ũ
N
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(Y T

� ũ
N
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�
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Next, consider b > 0. The semi-discrete SBP-SAT formulations of (1) and (2) are

u
t

+ (D
u

⌦ A)u = (P�1
u

Eu

N

⌦ ⌃)(CT ũ
N

� v0)e
u

N

+ (P�1
u

Eu

N

⌦ ⌅H̃)(u� eu
N

⌦ h̃),

v
t

+ bD
v

v = P�1
v

�(v0 � CT ũ
N

)ev0.
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where the penalty matrix ⌅ and H̃ are given by

⌅ =


�1 �2

�3 �4

�
, H̃ =


1 �R

r

0 0

�
Y T .

The boundary data h̃ is defined as h̃ = [0, h]T .

2.2.1 Stability conditions at the interface

First we consider b < 0. The discrete energy method is applied to (5) yields

d

dt
(kuk2
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d

kvk2
Pv
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N

Aũ
N

+ ↵
d

bv20 + 2ũT

N

⌃H + 2↵
d

�v0(v0 � CT ũ
N

). (7)

↵
d

is a positive weight and H = [CT ũ
N

� v0, C
T ũ

N

� v0]T .
In order to mimic the continuous case, we choose ⌃ = ↵b/2

⇥
0 C

⇤
. By inserting that

into (7) we get

d

dt
(kuk2

Pu⌦I

+ ↵
d

kvk2
Pv
) =ũT

N

Dũ
N

+ ↵
d

v20(b+ 2�)� �v0C
T ũ

N

(↵b+ 2↵
d

�). (8)

If we choose � = �↵b/2↵
d

, for ↵
d

 ↵ the right-hand side of (8) will be bounded due to
the continuous result above.

Next, we consider b > 0 and let h(t) = 0. Multiplying (6) by uT (P
u

⌦ I) and vTP
v

leads to

d

dt
(kuk2

Pu⌦I

+ ↵
d

kvk2
Pv
) ũT

N

(D + ⌅H̃ + (⌅H̃)T )ũ
N

,

where we have chosen ⌃ and � as for the case b < 0.
By using Y Y T = I, we can rewrite the right-hand side of (14) as

ũT

N

(D + ⌅H̃ + (⌅H̃)T )ũ
N

=(Y T ũ
N

)T (⇤+ (Y T⌅H̃Y ) + (Y T⌅H̃Y )T )(Y T ũ
N

). (9)

Let ⌅̃ = Y T⌅ and choose ⌅ such that ⌅̃ = diag(�̃1, �̃2). We also use the following split,

(Y T ũ
N

) =


(Y T

+ ũ
N

)
(Y T

� ũ
N

)

�
. (10)
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Now, we can rewrite (18) as,

ũT

N

(D + ⌅H̃ + (⌅H̃)T )ũ
N

=


(Y T

+ ũ
N

)
(Y T

� ũ
N

)

�
T


�+ + 2�̃1 �R

r

�̃1

�R
r

�̃1 ��

� 
(Y T

+ ũ
N

)
(Y T

� ũ
N

)

�
. (20)

By the choice �̃1 = ��+, the right-hand side of (20) can be rewritten as

(�� +R2
r

�+)(Y T

� ũ
N

)2 � �+((Y T

+ ũ
N

)�R
r

(Y T

� ũ
N

))2, (21)

which is negative due to the continuous result. Consequently if we choose
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⌅ = Y


��+ 0
0 0

�
,

d

dt
(kuk2

Pu⌦I

+ ↵
d

kvk2
Pv
)  0,

for ↵
d

� ↵.

2.2.2 Stability conditions at the left boundary
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(XT

+ �R
l

XT

�)u(�1, t) = 0, (22)

with |R
l

| < 1. The SAT term at x = �1 is (P�1
u

Eu

0 ⌦ ⇧)(I
N

⌦ Ĥ)u, where

⇧ =


⇡1 ⇡2

⇡3 ⇡4

�
, Ĥ =


1 �R

l

0 0

�
XT , (23)

and X is the matrix of eigenvectors to A. It can be shown that an energy estimate is
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⇡1 = �a/(4(R
l

+ 1)), ⇡2 = 0, ⇡3 = a/(4(R
l

� 1)), ⇡4 = 0. (24)

2.2.3 Stability conditions at the right boundary

For the case b < 0, one condition at x = 1 is also needed. We choose the homogeneuos
v(1, t) = 0. The SAT term at x = 1 is P�1

v

✓v2
N

ev
N

where ✓ satisfies

✓  b/2. (25)
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u

Eu

N

⌦ ⌃)(CT ũ
N

� v0)e
u

N

+ (P�1
u

Eu

N

⌦ ⌅H̃)(u� eu
N

⌦ h̃),

v
t

+ bD
v

v = P�1
v

�(v0 � CT ũ
N

)ev0.
(6)
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�
, H̃ =


1 �R

r

0 0

�
Y T .
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N

� v0, C
T ũ
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, for ↵
d

 ↵ the right-hand side of (8) will be bounded due to
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)T (⇤+ (Y T⌅H̃Y ) + (Y T⌅H̃Y )T )(Y T ũ
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� ũ
N

)

�
. (10)

5



‹Nr.›

Accuracy

J. Nordström, F. Ghasemi

SBP21 SBP42 SBP63 SBP84
N error rate error rate error rate error rate
20 2e-2 - 2e-3 - 2e-3 - 1e-3 -
40 6e-3 1.877 3e-4 3.006 1e-4 4.035 3e-5 5.376
80 1e-3 2.046 3e-5 3.242 8e-6 4.224 8e-7 5.392
160 4e-4 1.985 3e-6 3.052 4e-7 4.470 2e-8 5.113
320 1e-4 2.004 4e-7 3.021 2e-8 4.375 6e-10 5.091
640 2e-5 1.998 6e-8 3.013 1e-9 4.077 2e-11 5.047

Table 1: error and rate qu for b < 0.

SBP21 SBP42 SBP63 SBP84
N error rate error rate error rate error rate
20 2e-1 - 3e-2 - 3e-2 - 4e-3 -
40 4e-2 2.148 3e-3 3.154 1e-3 4.469 2e-4 4.288
80 1e-2 2.050 4e-4 3.046 6e-5 4.704 8e-6 4.741
160 2e-3 2.014 5e-5 3.011 2e-6 4.668 3e-7 4.916
320 6e-4 2.005 6e-6 3.003 1e-7 4.474 9e-9 4.798
640 2e-4 2.001 7e-7 3.002 4e-9 4.467 3e-10 4.832

Table 2: error and rate qv for b < 0.

4.1 Accuracy

The analytical solution

u1(x, t) = u2(x, t) = cos(2⇡(x� t))v(x, t) = sin(3⇡(x� bt))

The rate of convergence

q
u

= ln

✓
k(uN1

1 ,uN1
2 )� (u1, u2)kPu⌦I

k(uN2
1 ,uN2

2 )� (u1, u2)kPu⌦I

◆
/ ln

✓
N1

N2

◆
, q

v

= ln

✓
kvN1 � vk

Pv

kvN2 � vk
Pv

◆
/ ln

✓
N1

N2

◆

where u1, u2 and v are the analytical solutions and uNi
1 , uNi

2 and vNi are the corresponding
numerical solutions with N

i

grid points.
First, we consider b < 0. The choosen coe�cients are ↵ = ↵

d

= 1, a = 1, b = �1.
To have a well-posed problem, we choose |R

l

| < 1 and c1, c2 such that c1c2  �1/2. Let
R

l

= 0.25 and c1 = 1, c2 = �2. Tables 1 and 2 show the error and convergence rate q
u

and q
v

, respectively, for SBP operators with 2th, 3th, 4th and 5th order. Clearly the design
accuracy is obtained. Next, we consider b > 0. We again choose ↵ = ↵

d

= 1, a = 1, b = 1.
We take R

l

= 0.25, R
r

= 0.25, c1 = 1 and c2 = 1 in order to have a well-posed problem.
Tables 3 and 4 show the error and convergence rates for q

u

and q
v

, respectively. Again,
the design accuracy is obtained.
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where u1, u2 and v are the analytical solutions and uNi
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2 and vNi are the corresponding
numerical solutions with N
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grid points.
First, we consider b < 0. The choosen coe�cients are ↵ = ↵

d

= 1, a = 1, b = �1.
To have a well-posed problem, we choose |R

l

| < 1 and c1, c2 such that c1c2  �1/2. Let
R

l

= 0.25 and c1 = 1, c2 = �2. Tables 1 and 2 show the error and convergence rate q
u

and q
v

, respectively, for SBP operators with 2th, 3th, 4th and 5th order. Clearly the design
accuracy is obtained. Next, we consider b > 0. We again choose ↵ = ↵

d

= 1, a = 1, b = 1.
We take R

l

= 0.25, R
r

= 0.25, c1 = 1 and c2 = 1 in order to have a well-posed problem.
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u

and q
v

, respectively. Again,
the design accuracy is obtained.
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Summary and future work

▪ We have discussed/questioned whether there are general principles 
governing coupled problems. 

▪ As an intial study, a simple model problem was investigated. 
▪ It was shown that the coupling (or accuracy) conditions had to satisfy 

certain conditions, otherwise well-posedness could not be obtained. 
▪ This implies that some problems can be coupled, and others not. 
▪ Stability and accuracy followed immidiately from the well-posedness 

results using the SBP-SAT technique. 
▪ Future work: investigation regarding conservation and duality. 
▪ Future work: the relation between well-posednes, stability, conservation 

and duality.
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