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Problem statement

• Propagation of high-frequency waves with uncertain
parameters.

• e.g. earthquakes: uncertain medium and source location

Simplified model: scalar wave equation with

1. Highly oscillatory initial data.

2. Uncertainty (initial data and/or model parameters).
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Cauchy problem for the scalar wave equation

uεtt(t, x) = c(x)2∆uε(t, x), (t, x) ∈ R+ × Rn,

uε(0, x) = A0(x)e iΦ0(x)/ε,

uεt (0, x) =
1

ε
B0(x)e iΦ0(x)/ε, t = 0, x ∈ Rn,

with c wave speed, Φ0 initial phase, ε� 1 wavelength and A0,B0

amplitude parameters.

Sources of uncertainty:

• Wave speed c = c(x, y), y ∈ Γ ⊂ RN random vector,

• Initial data A0,B0,Φ0.

⇒ uncertainty in uε = uε(t, x, y).
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Goals

• Consider quantity of interest

Qε(y) =

∫
Rn

|uε(T , x, y)|2 ψ(x) dx, ψ ∈ C∞c (Rn).

where y ∈ Γ ⊂ RN .

• Want to compute

E[Qε(y)] =

∫
Γ
Qε(y)dy.

Proposed method:

1. Gaussian beam method.

2. Sparse stochastic collocation.
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Geometrical optics

Ray tracing
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• For high frequencies ε� 1, computational cost of direct
methods grows rapidly.

• Geometrical optics: approximation in the limit ε→ 0.

• GO breaks down at caustics.

• Remedy: Gaussian beam method.
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Gaussian beams

T = 0
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• High-frequency approximation using same Ansatz as GO

v ε(t, x, y) = A(t, x, y)e iΦ(t,x,y)/ε, y ∈ Γ ⊂ RN

with Φ and A Taylor expanded locally around GO ray q(t, y)

A(t, x, y) = a(t, x− q(t, y), y), Φ(t, x, y) = φ(t, x− q(t, y), y).

• Full solutions on a small ∼ √ε neighborhood around the ray.

• Φ has positive imaginary part away from the ray.
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Gaussian beams

First order beams:

a(t, x, y) = a0(t, y), φ(t, x, y) = φ0(t, y)+x·p(t, y)+
1

2
x·M(t, y)x.

• Require: Φ(t, x, y) solves eikonal equation to O(|x− q(t, y)|3)
and A(t, x, y) solves transport equation to O(|x− q(t, y)|).

• We obtain set of ODEs for q,p, φ0,M, a0.
• Gaussian shape

|v ε(t, x, y)| = a0 exp(−Im(Φ)/ε)

= a0 exp

(
− 1

2ε
(x− q(t, y)) · Im(M)(x− q(t, y))

)
.

• M = MT and Im(M) > 0 for all t > 0 if valid for initial data.
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Gaussian beam superposition
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More general solutions ⇒ superpositions of Gaussian beams:

uεGB(t, x, y) =
1

(2πε)n/2

∫
K0

v ε(t, x, y; z)dz,

K0 ⊂ Rn compact, z ∈ K0 is starting point.

• By wave equation linearity, sum of solutions is also a solution

• Accuracy ‖u(t, ·)− uGB(t, ·)‖E ≤ C (t) ε1/2



High frequency approximations Uncertainty quantification Numerical examples

Gaussian beam superposition

0 0.2 0.4 0.6 0.8 1 1.2

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x

y

More general solutions ⇒ superpositions of Gaussian beams:

uεGB(t, x, y) =
1

(2πε)n/2

∫
K0

v ε(t, x, y; z)dz,

K0 ⊂ Rn compact, z ∈ K0 is starting point.

• By wave equation linearity, sum of solutions is also a solution

• Accuracy ‖u(t, ·)− uGB(t, ·)‖E ≤ C (t) ε1/2



High frequency approximations Uncertainty quantification Numerical examples

Layout

High frequency approximations
Geometrical optics
Gaussian beam method

Uncertainty quantification
Stochastic collocation
Stochastic regularity for high frequency waves

Numerical examples



High frequency approximations Uncertainty quantification Numerical examples

Stochastic collocation

• Consider quantity of interest

Qε(y) =

∫
Rn

|uεGB(T , x, y)|2 ψ(x) dx, ψ ∈ C∞c (Rn).

where y ∈ Γ ⊂ RN (random).
• Want to compute

E[Qε(y)] =

∫
Γ
Qε(y)dy.

• Approximated by

E[Qε(y)] ≈
η∑

k=1

αkQε(y(k)),

where α weights associated to the points used.
• NOTE: one full solve of high-frequency problem needed for

each y value of Q(y).
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Sparse grid quadrature

E[Qε(y)] ≈
η∑

k=1

αkQε(y(k)),

• Key point: choice of collocation point set {y(k)}ηk=1 ∈ Γ.

• Full grids expensive for N � 1 (curse of dimensionality).

• Standard quadrature slow when N large.

• Monte-Carlo better but limited to η−1/2 rate.

• Sparse grids to reduce the cost.

• Sparse stochastic collocation faster if Qε smooth in y.
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Sparse grid quadrature

Sparse grid for N = 4 Sparse grid for N = 8 Sparse grid for N = 12

Smolyak sparse grid: nested points on Clenshaw-Curtis abscissas
(extrema of Chebyshev polynomials) using total degree index set.

• Number of collocation points grows slowly with N.

• Spectral convergence in η (number of collocation points)

error ≤ C (p,N)M(Qε) η−
p

1+log 2N , ∀p.

• Rate depends on smoothness of Qε: size of M ∼
∣∣∣d`Qε

dy`

∣∣∣.
• Rate depends only weakly on N.
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Stochastic regularity for high frequency waves

Stochastic Cauchy problem

uεtt(t, x, y) = c(x, y)2∆uε(t, x, y), (t, x, y) ∈ R+ × Rn × Γ,

uε(0, x, y) = A0(x, y)e iΦ0(x,y)/ε,

uεt (0, x, y) =
1

ε
B0(x, y)e iΦ0(x,y)/ε, t = 0, (x, y) ∈ Rn × Γ.

Qε(y) =

∫
Rn

|uεGB(T , x, y)|2 ψ(x) dx, ψ ∈ C∞c (Rn).

• Sources of uncertainty: speed, initial position, wave phase...

• For fast convergence we need

sup
y∈Γ

∣∣∣∣d`Qε(y)

dy`

∣∣∣∣ ≤ C`, ∀` ∈ NN ,

where C` independent of the wavelength ε.
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Stochastic regularity for high frequency waves

In general, uε(t, x, y) oscillates with period ∼ ε both in x and y.

Conjecture/Theorem

The bound

sup
y∈Γ

∣∣∣∣d`Qε(y)

dy`

∣∣∣∣ ≤ C`, ∀` ∈ NN ,

C` independent of the wavelength ε, holds for

Qε(y) =

∫
Rn

|uεGB(T , x, y)|2 ψ(x) dx, ψ ∈ C∞c (Rn).

with single family initial data.
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Example 1: Caustics

Figure: Two bumps moving towards each other (absolute value).

Φ0(x) = |x1|+ x2
2 , x = (x1, x2).

Caustics appear for t ≥ 0.5. Circle indicates the support of the QoI
test function.
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Figure : Quantity of interest Qε(y) with its first and second derivatives.

• N = 2 random variables – initial position (y1) and constant
speed (y2).

• QoI along the line y(r) = (1 + r , 1 + 2r), for different wave
lengths ε.
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Example 2: Sparse grids

• N = 5 random variables (speed, initial data – pulse shape,
position).

• Φ0 = |x1|.
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Relative error in the expected value of Qε for levels ` ≥ 1:

E(η(`)) :=

∣∣∣E[SI(`ref)[Qε]]− E[SI(`)[Qε]]
∣∣∣∣∣∣E[SI(`ref)[Qε]]

∣∣∣ .
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• Fast spectral convergence compared to Monte-Carlo.

• As ε decreases, error converges ⇒ uniform bounds.
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