Uncertainty quantification

Numerical examples

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Uncertainty Quantification for High Frequency Waves

Gabriela Malenová

Royal Institute of Technology KTH

BIT Circus 2015, Umeå, August 27

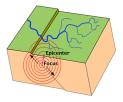
Jointly with Olof Runborg, Mohammad Motamed, Raul Tempone

High	frequency	approximations
0		
000		

(日)

Problem statement

- Propagation of high-frequency waves with uncertain parameters.
- e.g. earthquakes: uncertain medium and source location



Simplified model: scalar wave equation with

- 1. Highly oscillatory initial data.
- 2. Uncertainty (initial data and/or model parameters).

(日)

Cauchy problem for the scalar wave equation

$$egin{aligned} &u^arepsilon_{tt}(t,\mathbf{x})=c(\mathbf{x})^2\Delta u^arepsilon(t,\mathbf{x}),\qquad(t,\mathbf{x})\in\mathbb{R}^+ imes\mathbb{R}^n,\ &u^arepsilon(0,\mathbf{x})=A_0(\mathbf{x})e^{i\Phi_0(\mathbf{x})/arepsilon},\ &u^arepsilon(0,\mathbf{x})=rac{1}{arepsilon}B_0(\mathbf{x})e^{i\Phi_0(\mathbf{x})/arepsilon},\ &t=0,\ \mathbf{x}\in\mathbb{R}^n, \end{aligned}$$

with c wave speed, Φ_0 initial phase, $\varepsilon \ll 1$ wavelength and A_0, B_0 amplitude parameters.

Cauchy problem for the scalar wave equation

$$egin{aligned} &u^arepsilon_{tt}(t,\mathbf{x})=c(\mathbf{x},\mathbf{y})^2\Delta u^arepsilon(t,\mathbf{x}),\qquad(t,\mathbf{x},\mathbf{y})\in\mathbb{R}^+ imes\mathbb{R}^n imes\Gamma,\ &u^arepsilon(0,\mathbf{x})=A_0(\mathbf{x})e^{i\Phi_0(\mathbf{x})/arepsilon},\ &u^arepsilon(0,\mathbf{x})=rac{1}{arepsilon}B_0(\mathbf{x})e^{i\Phi_0(\mathbf{x})/arepsilon},\ &t=0,\ (\mathbf{x})\in\mathbb{R}^n, \end{aligned}$$

with c wave speed, Φ_0 initial phase, $\varepsilon \ll 1$ wavelength and A_0, B_0 amplitude parameters.

Sources of uncertainty:

• Wave speed $c = c(\mathbf{x}, \mathbf{y}), \quad \mathbf{y} \in \Gamma \subset \mathbb{R}^N$ random vector,

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Cauchy problem for the scalar wave equation

$$egin{aligned} &u^arepsilon_{tt}(t,\mathbf{x})=c(\mathbf{x},\mathbf{y})^2\Delta u^arepsilon(t,\mathbf{x}), &(t,\mathbf{x},\mathbf{y})\in\mathbb{R}^+ imes\mathbb{R}^n imes\Gamma, \ &u^arepsilon(0,\mathbf{x})=A_0(\mathbf{x},\mathbf{y})e^{i\Phi_0(\mathbf{x},\mathbf{y})/arepsilon}, &u^arepsilon(0,\mathbf{x})=rac{1}{arepsilon}B_0(\mathbf{x},\mathbf{y})e^{i\Phi_0(\mathbf{x},\mathbf{y})/arepsilon}, &t=0,\ &(\mathbf{x},\mathbf{y})\in\mathbb{R}^n imes\Gamma \end{aligned}$$

with c wave speed, Φ_0 initial phase, $\varepsilon \ll 1$ wavelength and A_0, B_0 amplitude parameters.

Sources of uncertainty:

- Wave speed $c = c(\mathbf{x}, \mathbf{y}), \quad \mathbf{y} \in \Gamma \subset \mathbb{R}^N$ random vector,
- Initial data A_0, B_0, Φ_0 .

Cauchy problem for the scalar wave equation

$$\begin{split} u_{tt}^{\varepsilon}(t,\mathbf{x},\mathbf{y}) &= c(\mathbf{x},\mathbf{y})^2 \Delta u^{\varepsilon}(t,\mathbf{x},\mathbf{y}), \qquad (t,\mathbf{x},\mathbf{y}) \in \mathbb{R}^+ \times \mathbb{R}^n \times \Gamma, \\ u^{\varepsilon}(0,\mathbf{x},\mathbf{y}) &= A_0(\mathbf{x},\mathbf{y})e^{i\Phi_0(\mathbf{x},\mathbf{y})/\varepsilon}, \\ u_t^{\varepsilon}(0,\mathbf{x},\mathbf{y}) &= \frac{1}{\varepsilon}B_0(\mathbf{x},\mathbf{y})e^{i\Phi_0(\mathbf{x},\mathbf{y})/\varepsilon}, \qquad t = 0, \ (\mathbf{x},\mathbf{y}) \in \mathbb{R}^n \times \Gamma, \end{split}$$

with c wave speed, Φ_0 initial phase, $\varepsilon \ll 1$ wavelength and A_0, B_0 amplitude parameters.

Sources of uncertainty:

- Wave speed $c = c(\mathbf{x}, \mathbf{y}), \quad \mathbf{y} \in \Gamma \subset \mathbb{R}^N$ random vector,
- Initial data A₀, B₀, Φ₀.

 \Rightarrow uncertainty in $u^{\varepsilon} = u^{\varepsilon}(t, \mathbf{x}, \mathbf{y}).$

High frequency approximations 0 000	Uncertainty quantification 000 00	Numerical examples
	Goals	

• Consider quantity of interest

$$\mathcal{Q}^{arepsilon}(\mathbf{y}) = \int_{\mathbb{R}^n} |u^{arepsilon}(\mathcal{T},\mathbf{x},\mathbf{y})|^2 \, \psi(\mathbf{x}) \, d\mathbf{x}, \quad \psi \in C^\infty_c(\mathbb{R}^n).$$

(ロ)、<</p>

where $\mathbf{y} \in \Gamma \subset \mathbb{R}^N$.

High frequency approximations 0 000	Uncertainty quantification 000 00	Numerical examples
	Goals	

• Consider quantity of interest

$$\mathcal{Q}^{arepsilon}(\mathbf{y}) = \int_{\mathbb{R}^n} |u^{arepsilon}(\mathcal{T},\mathbf{x},\mathbf{y})|^2 \, \psi(\mathbf{x}) \, d\mathbf{x}, \quad \psi \in C^\infty_c(\mathbb{R}^n).$$

where $\mathbf{y} \in \Gamma \subset \mathbb{R}^N$.

• Want to compute

$$\mathbb{E}[\mathcal{Q}^{arepsilon}(\mathbf{y})] = \int_{\mathsf{\Gamma}} \mathcal{Q}^{arepsilon}(\mathbf{y}) d\mathbf{y}.$$

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

High frequency approximations 0 000	Uncertainty quantification 000 00	Numerical examples
	Goals	

• Consider quantity of interest

$$\mathcal{Q}^{arepsilon}(\mathbf{y}) = \int_{\mathbb{R}^n} |u^{arepsilon}(\mathcal{T},\mathbf{x},\mathbf{y})|^2 \, \psi(\mathbf{x}) \, d\mathbf{x}, \quad \psi \in \mathit{C}^{\infty}_{c}(\mathbb{R}^n).$$

where $\mathbf{y} \in \Gamma \subset \mathbb{R}^N$.

• Want to compute

$$\mathbb{E}[\mathcal{Q}^{arepsilon}(\mathbf{y})] = \int_{\mathsf{\Gamma}} \mathcal{Q}^{arepsilon}(\mathbf{y}) d\mathbf{y}.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Proposed method:

- 1. Gaussian beam method.
- 2. Sparse stochastic collocation.

High	frequency	approximations
0		
000		

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

Layout

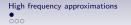
High frequency approximations

Geometrical optics Gaussian beam method

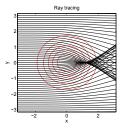
Uncertainty quantification

Stochastic collocation Stochastic regularity for high frequency w

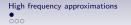
Numerical examples



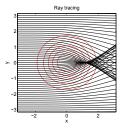
Geometrical optics



- For high frequencies $\varepsilon \ll 1$, computational cost of direct methods grows rapidly.
- Geometrical optics: approximation in the limit $\varepsilon \rightarrow 0$.
- GO breaks down at caustics.
- Remedy: Gaussian beam method.

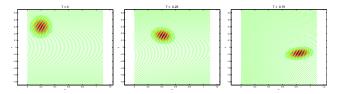


Geometrical optics



- For high frequencies $\varepsilon \ll 1$, computational cost of direct methods grows rapidly.
- Geometrical optics: approximation in the limit $\varepsilon \rightarrow 0$.
- GO breaks down at caustics.
- Remedy: Gaussian beam method.

High frequency approximations	Uncertainty quantification	Numerical examples
○ ●○○	000	
	Gaussian beams	

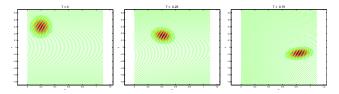


• High-frequency approximation using same Ansatz as GO $v^{\varepsilon}(t, \mathbf{x}, \mathbf{y}) = A(t, \mathbf{x}, \mathbf{y})e^{i\Phi(t, \mathbf{x}, \mathbf{y})/\varepsilon}, \quad \mathbf{y} \in \Gamma \subset \mathbb{R}^{N}$

with Φ and A Taylor expanded locally around GO ray $\mathbf{q}(t, \mathbf{y})$

$$A(t,\mathbf{x},\mathbf{y}) = a(t,\mathbf{x}-\mathbf{q}(t,\mathbf{y}),\mathbf{y}), \qquad \Phi(t,\mathbf{x},\mathbf{y}) = \phi(t,\mathbf{x}-\mathbf{q}(t,\mathbf{y}),\mathbf{y}).$$

High frequency approximations ○ ●○○	Uncertainty quantification 000 00	Numerical examples
	Gaussian beams	



• High-frequency approximation using same Ansatz as GO $v^{\varepsilon}(t, \mathbf{x}, \mathbf{y}) = A(t, \mathbf{x}, \mathbf{y})e^{i\Phi(t, \mathbf{x}, \mathbf{y})/\varepsilon}, \quad \mathbf{y} \in \Gamma \subset \mathbb{R}^{N}$

with Φ and A Taylor expanded locally around GO ray $\mathbf{q}(t, \mathbf{y})$

$$A(t,\mathbf{x},\mathbf{y}) = a(t,\mathbf{x}-\mathbf{q}(t,\mathbf{y}),\mathbf{y}), \qquad \Phi(t,\mathbf{x},\mathbf{y}) = \phi(t,\mathbf{x}-\mathbf{q}(t,\mathbf{y}),\mathbf{y}).$$

- Full solutions on a small $\sim \sqrt{arepsilon}$ neighborhood around the ray.
- Φ has positive imaginary part away from the ray.

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Gaussian beams

First order beams:

$$a(t,\mathbf{x},\mathbf{y}) = a_0(t,\mathbf{y}), \quad \phi(t,\mathbf{x},\mathbf{y}) = \phi_0(t,\mathbf{y}) + \mathbf{x} \cdot \mathbf{p}(t,\mathbf{y}) + \frac{1}{2} \mathbf{x} \cdot M(t,\mathbf{y}) \mathbf{x}.$$

• Require: $\Phi(t, \mathbf{x}, \mathbf{y})$ solves eikonal equation to $O(|\mathbf{x} - \mathbf{q}(t, \mathbf{y})|^3)$ and $A(t, \mathbf{x}, \mathbf{y})$ solves transport equation to $O(|\mathbf{x} - \mathbf{q}(t, \mathbf{y})|)$.

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Gaussian beams

First order beams:

$$a(t,\mathbf{x},\mathbf{y}) = a_0(t,\mathbf{y}), \quad \phi(t,\mathbf{x},\mathbf{y}) = \phi_0(t,\mathbf{y}) + \mathbf{x} \cdot \mathbf{p}(t,\mathbf{y}) + \frac{1}{2} \mathbf{x} \cdot M(t,\mathbf{y}) \mathbf{x}.$$

- Require: $\Phi(t, \mathbf{x}, \mathbf{y})$ solves eikonal equation to $O(|\mathbf{x} \mathbf{q}(t, \mathbf{y})|^3)$ and $A(t, \mathbf{x}, \mathbf{y})$ solves transport equation to $O(|\mathbf{x} - \mathbf{q}(t, \mathbf{y})|)$.
- We obtain set of ODEs for $\mathbf{q}, \mathbf{p}, \phi_0, M, a_0$.

Gaussian beams

First order beams:

$$a(t,\mathbf{x},\mathbf{y}) = a_0(t,\mathbf{y}), \quad \phi(t,\mathbf{x},\mathbf{y}) = \phi_0(t,\mathbf{y}) + \mathbf{x} \cdot \mathbf{p}(t,\mathbf{y}) + \frac{1}{2} \mathbf{x} \cdot M(t,\mathbf{y}) \mathbf{x}.$$

- Require: $\Phi(t, \mathbf{x}, \mathbf{y})$ solves eikonal equation to $O(|\mathbf{x} \mathbf{q}(t, \mathbf{y})|^3)$ and $A(t, \mathbf{x}, \mathbf{y})$ solves transport equation to $O(|\mathbf{x} - \mathbf{q}(t, \mathbf{y})|)$.
- We obtain set of ODEs for $\mathbf{q}, \mathbf{p}, \phi_0, M, a_0$.
- Gaussian shape

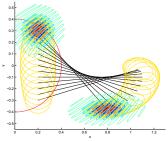
$$egin{aligned} |v^arepsilon(t,\mathbf{x},\mathbf{y})| &= a_0 \exp\left(-\mathrm{Im}(\Phi)/arepsilon
ight) \ &= a_0 \exp\left(-rac{1}{2arepsilon}(\mathbf{x}-\mathbf{q}(t,\mathbf{y}))\cdot\mathrm{Im}(M)(\mathbf{x}-\mathbf{q}(t,\mathbf{y}))
ight). \end{aligned}$$

• $M = M^T$ and Im(M) > 0 for all t > 0 if valid for initial data.

High frequency approximations \circ $\circ \circ \circ \bullet$ Uncertainty quantification

Numerical examples

Gaussian beam superposition



More general solutions \Rightarrow superpositions of Gaussian beams:

$$u_{GB}^{\varepsilon}(t,\mathbf{x},\mathbf{y}) = rac{1}{(2\piarepsilon)^{n/2}}\int_{\mathcal{K}_{0}}v^{arepsilon}(t,\mathbf{x},\mathbf{y};\mathbf{z})d\mathbf{z},$$

 $K_0 \subset \mathbb{R}^n$ compact, $\mathbf{z} \in K_0$ is starting point.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへ⊙

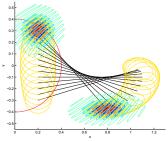
High frequency approximations \circ $\circ \circ \circ \bullet$ Uncertainty quantification

Numerical examples

Э

Sac

Gaussian beam superposition



More general solutions \Rightarrow superpositions of Gaussian beams:

$$u^arepsilon_{GB}(t,\mathbf{x},\mathbf{y}) = rac{1}{(2\piarepsilon)^{n/2}}\int_{K_0}v^arepsilon(t,\mathbf{x},\mathbf{y};\mathbf{z})d\mathbf{z},$$

 $K_0 \subset \mathbb{R}^n$ compact, $\mathbf{z} \in K_0$ is starting point.

- By wave equation linearity, sum of solutions is also a solution
- Accuracy $\|u(t,\cdot) u_{GB}(t,\cdot)\|_E \leq C(t) \varepsilon^{1/2}$

High	frequency	approximations
0		
000		

Numerical examples

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

Layout

High frequency approximations Geometrical optics Gaussian beam method

Uncertainty quantification

Stochastic collocation Stochastic regularity for high frequency waves

Numerical examples

Uncertainty quantification • OO • O

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Stochastic collocation

• Consider quantity of interest

$$\mathcal{Q}^{arepsilon}(\mathbf{y}) = \int_{\mathbb{R}^n} |u^{arepsilon}_{GB}(\mathcal{T},\mathbf{x},\mathbf{y})|^2 \, \psi(\mathbf{x}) \, d\mathbf{x}, \quad \psi \in C^\infty_c(\mathbb{R}^n).$$

where $\mathbf{y} \in \Gamma \subset \mathbb{R}^N$ (random).

• Want to compute

$$\mathbb{E}[\mathcal{Q}^{arepsilon}(\mathbf{y})] = \int_{\mathsf{\Gamma}} \mathcal{Q}^{arepsilon}(\mathbf{y}) d\mathbf{y}.$$

Uncertainty quantification

Stochastic collocation

• Consider quantity of interest

$$\mathcal{Q}^{arepsilon}(\mathbf{y}) = \int_{\mathbb{R}^n} |u^{arepsilon}_{GB}(T,\mathbf{x},\mathbf{y})|^2 \, \psi(\mathbf{x}) \, d\mathbf{x}, \quad \psi \in C^\infty_c(\mathbb{R}^n).$$

where $\mathbf{y} \in \Gamma \subset \mathbb{R}^N$ (random).

• Want to compute

$$\mathbb{E}[\mathcal{Q}^{arepsilon}(\mathbf{y})] = \int_{\mathsf{\Gamma}} \mathcal{Q}^{arepsilon}(\mathbf{y}) d\mathbf{y}.$$

• Approximated by

$$\mathbb{E}[\mathcal{Q}^{\varepsilon}(\mathbf{y})] \approx \sum_{k=1}^{\eta} \alpha_k \mathcal{Q}^{\varepsilon}(\mathbf{y}^{(k)}),$$

where α weights associated to the points used.

 NOTE: one full solve of high-frequency problem needed for each y value of Q(y).

Uncertainty quantification

Numerical examples

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

Sparse grid quadrature

$$\mathbb{E}[\mathcal{Q}^{\varepsilon}(\mathbf{y})] \approx \sum_{k=1}^{\eta} \alpha_k \mathcal{Q}^{\varepsilon}(\mathbf{y}^{(k)}),$$

• Key point: choice of collocation point set $\{\mathbf{y}^{(k)}\}_{k=1}^{\eta} \in \Gamma$.

Uncertainty quantification

Numerical examples

Sparse grid quadrature

$$\mathbb{E}[\mathcal{Q}^{\varepsilon}(\mathbf{y})] \approx \sum_{k=1}^{\eta} \alpha_k \mathcal{Q}^{\varepsilon}(\mathbf{y}^{(k)}),$$

- Key point: choice of collocation point set $\{\mathbf{y}^{(k)}\}_{k=1}^{\eta} \in \Gamma$.
- Full grids expensive for $N \gg 1$ (curse of dimensionality).
- Standard quadrature slow when N large.

Uncertainty quantification

Numerical examples

Sparse grid quadrature

$$\mathbb{E}[\mathcal{Q}^{\varepsilon}(\mathbf{y})] \approx \sum_{k=1}^{\eta} \alpha_k \mathcal{Q}^{\varepsilon}(\mathbf{y}^{(k)}),$$

- Key point: choice of collocation point set $\{\mathbf{y}^{(k)}\}_{k=1}^{\eta} \in \Gamma$.
- Full grids expensive for $N \gg 1$ (curse of dimensionality).
- Standard quadrature slow when N large.
- Monte-Carlo better but limited to $\eta^{-1/2}$ rate.

Uncertainty quantification

Numerical examples

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Sparse grid quadrature

$$\mathbb{E}[\mathcal{Q}^{\varepsilon}(\mathbf{y})] \approx \sum_{k=1}^{\eta} \alpha_k \mathcal{Q}^{\varepsilon}(\mathbf{y}^{(k)}),$$

- Key point: choice of collocation point set $\{\mathbf{y}^{(k)}\}_{k=1}^{\eta} \in \Gamma$.
- Full grids expensive for $N \gg 1$ (curse of dimensionality).
- Standard quadrature slow when N large.
- Monte-Carlo better but limited to $\eta^{-1/2}$ rate.
- Sparse grids to reduce the cost.
- Sparse stochastic collocation faster if $\mathcal{Q}^{\varepsilon}$ smooth in **y**.

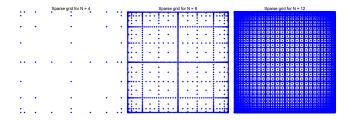
Numerical examples

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Э

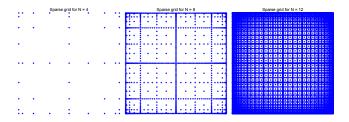
Sac

Sparse grid quadrature



Smolyak sparse grid: nested points on Clenshaw-Curtis abscissas (extrema of Chebyshev polynomials) using total degree index set.

Sparse grid quadrature



Smolyak sparse grid: nested points on Clenshaw-Curtis abscissas (extrema of Chebyshev polynomials) using total degree index set.

- Number of collocation points grows slowly with N.
- Spectral convergence in η (number of collocation points)

$$\mathsf{error} \leq {\mathcal{C}}({\mathcal{p}},{\mathcal{N}}){\mathcal{M}}({\mathcal{Q}}^arepsilon)\,\eta^{-rac{p}{1+\log 2N}}, \quad orall {\mathcal{p}}$$

- Rate depends on smoothness of Q^{ε} : size of $M \sim \left| \frac{d^{\ell}Q^{\varepsilon}}{d\mathbf{y}^{\ell}} \right|$.
- Rate depends only weakly on N.

Sac

Stochastic regularity for high frequency waves

Stochastic Cauchy problem

$$\begin{split} u_{tt}^{\varepsilon}(t,\mathbf{x},\mathbf{y}) &= c(\mathbf{x},\mathbf{y})^{2} \Delta u^{\varepsilon}(t,\mathbf{x},\mathbf{y}), \qquad (t,\mathbf{x},\mathbf{y}) \in \mathbb{R}^{+} \times \mathbb{R}^{n} \times \Gamma, \\ u^{\varepsilon}(0,\mathbf{x},\mathbf{y}) &= A_{0}(\mathbf{x},\mathbf{y})e^{i\Phi_{0}(\mathbf{x},\mathbf{y})/\varepsilon}, \\ u_{t}^{\varepsilon}(0,\mathbf{x},\mathbf{y}) &= \frac{1}{\varepsilon}B_{0}(\mathbf{x},\mathbf{y})e^{i\Phi_{0}(\mathbf{x},\mathbf{y})/\varepsilon}, \qquad t = 0, \ (\mathbf{x},\mathbf{y}) \in \mathbb{R}^{n} \times \Gamma. \\ \mathcal{Q}^{\varepsilon}(\mathbf{y}) &= \int_{\mathbb{R}^{n}} |u_{GB}^{\varepsilon}(T,\mathbf{x},\mathbf{y})|^{2} \psi(\mathbf{x}) d\mathbf{x}, \quad \psi \in C_{c}^{\infty}(\mathbb{R}^{n}). \end{split}$$

- Sources of uncertainty: speed, initial position, wave phase...
- For fast convergence we need

$$\sup_{\mathbf{y}\in\Gamma}\left|\frac{d^{\ell}\mathcal{Q}^{\varepsilon}(\mathbf{y})}{d\mathbf{y}^{\ell}}\right|\leq C_{\ell},\quad\forall\ell\in\mathbb{N}^{N},$$

where C_{ℓ} independent of the wavelength ε .

Sac

Stochastic regularity for high frequency waves

Stochastic Cauchy problem

$$\begin{split} u_{tt}^{\varepsilon}(t,\mathbf{x},\mathbf{y}) &= c(\mathbf{x},\mathbf{y})^{2} \Delta u^{\varepsilon}(t,\mathbf{x},\mathbf{y}), \qquad (t,\mathbf{x},\mathbf{y}) \in \mathbb{R}^{+} \times \mathbb{R}^{n} \times \Gamma, \\ u^{\varepsilon}(0,\mathbf{x},\mathbf{y}) &= A_{0}(\mathbf{x},\mathbf{y})e^{i\Phi_{0}(\mathbf{x},\mathbf{y})/\varepsilon}, \\ u_{t}^{\varepsilon}(0,\mathbf{x},\mathbf{y}) &= \frac{1}{\varepsilon}B_{0}(\mathbf{x},\mathbf{y})e^{i\Phi_{0}(\mathbf{x},\mathbf{y})/\varepsilon}, \qquad t = 0, \ (\mathbf{x},\mathbf{y}) \in \mathbb{R}^{n} \times \Gamma. \\ \mathcal{Q}^{\varepsilon}(\mathbf{y}) &= \int_{\mathbb{R}^{n}} |u_{GB}^{\varepsilon}(T,\mathbf{x},\mathbf{y})|^{2} \psi(\mathbf{x}) d\mathbf{x}, \quad \psi \in C_{c}^{\infty}(\mathbb{R}^{n}). \end{split}$$

- Sources of uncertainty: speed, initial position, wave phase...
- For fast convergence we need

$$\sup_{\mathbf{y}\in\Gamma}\left|\frac{d^{\ell}\mathcal{Q}^{\varepsilon}(\mathbf{y})}{d\mathbf{y}^{\ell}}\right|\leq C_{\ell},\quad\forall\ell\in\mathbb{N}^{N},$$

where C_{ℓ} independent of the wavelength ε .

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Stochastic regularity for high frequency waves

In general, $u^{\varepsilon}(t, \mathbf{x}, \mathbf{y})$ oscillates with period $\sim \varepsilon$ both in \mathbf{x} and \mathbf{y} .

Conjecture/Theorem

The bound

$$\sup_{\boldsymbol{\eta}\in\Gamma}\left|\frac{d^{\ell}\mathcal{Q}^{\varepsilon}(\boldsymbol{y})}{d\boldsymbol{y}^{\ell}}\right|\leq C_{\ell},\quad\forall\ell\in\mathbb{N}^{N},$$

 \textit{C}_{ℓ} independent of the wavelength ε , holds for

$$\mathcal{Q}^arepsilon(\mathbf{y}) = \int_{\mathbb{R}^n} |u^arepsilon_{GB}(\mathcal{T},\mathbf{x},\mathbf{y})|^2 \, \psi(\mathbf{x}) \, d\mathbf{x}, \quad \psi \in C^\infty_c(\mathbb{R}^n).$$

with single family initial data.

High	frequency	approximations	
0000			

Numerical examples

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

Layout

High frequency approximations Geometrical optics Gaussian beam method

Uncertainty quantification

Stochastic collocation Stochastic regularity for high frequency wave

Numerical examples

Uncertainty quantification

Numerical examples

Example 1: Caustics

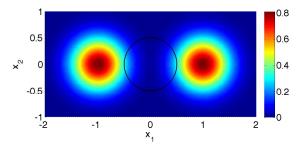


Figure: Two bumps moving towards each other (absolute value).

$$\Phi_0(\mathbf{x}) = |x_1| + x_2^2, \qquad \mathbf{x} = (x_1, x_2).$$

Caustics appear for $t \ge 0.5$. Circle indicates the support of the Qol test function.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Uncertainty quantification

Numerical examples

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Example 1: Caustics

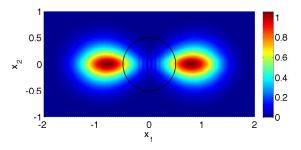


Figure: Two bumps moving towards each other (absolute value).

$$\Phi_0(\mathbf{x}) = |x_1| + x_2^2, \qquad \mathbf{x} = (x_1, x_2).$$

Uncertainty quantification

Numerical examples

Example 1: Caustics

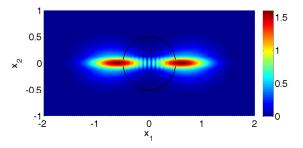


Figure: Two bumps moving towards each other (absolute value).

$$\Phi_0(\mathbf{x}) = |x_1| + x_2^2, \qquad \mathbf{x} = (x_1, x_2).$$

Uncertainty quantification

Numerical examples

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Example 1: Caustics

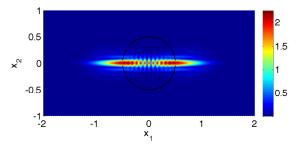


Figure: Two bumps moving towards each other (absolute value).

$$\Phi_0(\mathbf{x}) = |x_1| + x_2^2, \qquad \mathbf{x} = (x_1, x_2).$$

Uncertainty quantification

Numerical examples

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Example 1: Caustics

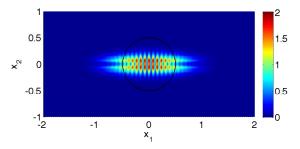


Figure: Two bumps moving towards each other (absolute value).

$$\Phi_0(\mathbf{x}) = |x_1| + x_2^2, \qquad \mathbf{x} = (x_1, x_2).$$

Uncertainty quantification

Numerical examples

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Example 1: Caustics

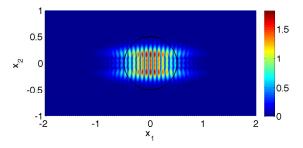
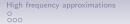


Figure: Two bumps moving towards each other (absolute value).

$$\Phi_0(\mathbf{x}) = |x_1| + x_2^2, \qquad \mathbf{x} = (x_1, x_2).$$



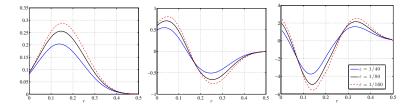


Figure : Quantity of interest $Q^{\varepsilon}(\mathbf{y})$ with its first and second derivatives.

- N = 2 random variables initial position (y_1) and constant speed (y_2) .
- Qol along the line y(r) = (1 + r, 1 + 2r), for different wave lengths ε.

Uncertainty quantification

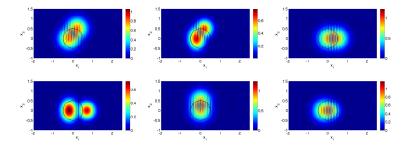
Numerical examples

Э

Sac

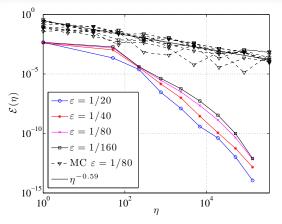
A D > A D > A D > A D >

Example 2: Sparse grids



- *N* = 5 random variables (speed, initial data pulse shape, position).
- $\Phi_0 = |x_1|$.

Uncertainty quantification



Relative error in the expected value of $\mathcal{Q}^{\varepsilon}$ for levels $\ell \geq 1$:

$$\mathcal{E}(\eta(\ell)) := \frac{\left| \mathbb{E}[\mathcal{S}_{\mathcal{I}(\ell_{\mathsf{ref}})}[\mathcal{Q}^{\varepsilon}]] - \mathbb{E}[\mathcal{S}_{\mathcal{I}(\ell)}[\mathcal{Q}^{\varepsilon}]] \right|}{\left| \mathbb{E}[\mathcal{S}_{\mathcal{I}(\ell_{\mathsf{ref}})}[\mathcal{Q}^{\varepsilon}]] \right|}.$$

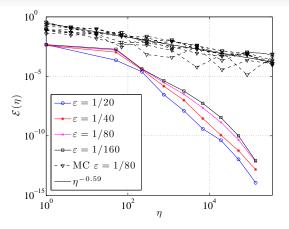
900

3

Uncertainty quantification

(日)、

990



- Fast spectral convergence compared to Monte-Carlo.
- As ε decreases, error converges \Rightarrow uniform bounds.

Uncertainty quantification

Numerical examples

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

THANK YOU FOR YOUR ATTENTION