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Outline of the talk

I Target problem from Geophysics

I Block preconditioner and Schur complement

I Toeplitz theory

I Results

I Conclusion



Target Problem

Glacial Isostatic Adjustment
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Simplified elastic model

−∇ ·
(
2µEε

)
−∇

(
u · b

)
+
(
∇ · u

)
c − µE∇p = f ,

µE∇ · u −
µ2E
λE

p = 0.

The model is discretized using:

I Modified Taylor-Hood Q1Q1. (a stable finite element pair of
spaces)

I quadrilateral mesh

A =

[
K BT

B −M

]
I The pivot block K could be nonsymmetric.

I M is a scaled mass matrix.



Preconditioning

Schur complement
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Iterative solution of large scale linear systems:

Ax = b, Seek D : D−1Ax = D−1b

Use a block factorization of A

A =

[
K BT

B −M

]
=

[
K 0
B −SA

] [
I1 K−1BT

0 I2

]
,

SA = M + BK−1BT .

Many possibilities to construct preconditioners. One possibility is

D =

[
K 0
B −SA

]

3 D is the ideal preconditioner

3 the GMRES solver, in certain cases, converges in maximum
two iterations when preconditioned with D.

7 D is expensive to construct and computationally inefficient.
Involves an inverse of K .
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The action of the preconditioner D

Matrix A =

[
K BT

B −M

]
, preconditioned by D =

[
[K ] 0

B −[S̃A]

]

I S̃A approximates SA = M + BF−1BT

I [·] means a (preconditioned, very efficient) inner solver.

From theory: very few (outer) iterations if

I K is solved accurately.

I S̃A is a good approximation for SA.
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The Schur complement approximation

Compute S̃A using the element-wise approach

A =
N∑
i=1

W T
i Ae

i Wi , where Ae
i =

[
K e
i (Be

i )T

Be
i −Me

i

]
,

Wi local-to-global mapping of the degrees of freedom

N number of cells in the discretization.

Se
i = Me

i + Be
i

(
K e
i + h2i I

)−1
(Be

i )T ,

S̃A =
N∑
i=1

(Wi :2)T Se
i Wi :2

I h - characteristic size of the spatial mesh.
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Analysis of the element-wise Schur

3 A - SPD; → 0 < αSA ≤ S̃A ≤ SA

Bounds have been derived earlier (J. Kraus, O. Axelsson, R. Blaheta, M.

Neytcheva).

3 A - symmetric indefinit; → 0 < SA ≤ S̃A ≤ βSA.

Shown to work. Not proven. Erik Bängtsson, Maya Neytcheva

(2006-2007)

A. Dorostkar, M. Neytcheva and B. Lund. Numerical and computational

aspects of some block-preconditioners for saddle point systems. Journal

of Parallel Computing, 2015, In press.

7 A - non-symmetric (new tools needed).



Toeplitz

A short introduction
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Toeplitz

A Toeplitz matrix Tn generated by f (θ) is a square matrix that has
constant blocks or elements along each descending diagonal

XN = Tn(f ) =



A0 A−1 A−2 · · · A1−n

A1 A0 A−1
...

A2 A1 A0
. . . A−2

...
. . .

. . . A−1
An−1 A2 A1 A0


where

Ak =
1

2π

∫ π

−π
f (θ)e−ikθdθ, k ∈ Z.

The function f (θ) is known as the symbol of Tn
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Toeplitz, cont.

I In the FE setting, a d-dimensional problem with constant
coefficients, discretized on quadrilateral FEs of degree p is a d
level block valued Toeplitz with blocks of size, s = pd .

I Each block Ak , k = 1 · · · n could be Toeplitz in itself. In this
case Tn is multilevel Toeplitz.

I For f real-valued continuous, the eigenvalues of Tn(f ) for
large n are approximate evaluations of f , over a grid of the

form {x (n)j }, x
(n)
j = −π + 2πj

n , j = 1, · · · , n.

I If the symbol f is an s-by-s matrix, the eigenvalues of Tn are
described by the eigenvalues of n/s equispaced evaluations of
f . If Tn is non-Hermitian, the same holds with the singular
values of Tn.
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Toeplitz, cont.

In the PDE setting, the system matrix XN is Toeplitz
XN = Tn(f ) + EN

I EN is a sequence with symbol equal to zero and this kind of
sequences occurs as well when treating variable coefficient
PDEs.

I XN has the same symbol as Tn.

I The generated uniform sampling of the symbol of Tn is
different by a small margin from the eigenvalues of XN .

I There may be very few outliers which are not covered by the
symbol of Tn.
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Generalized locally Toeplitz (GLT)

I The approximation of PDEs with non-constant coefficients,
general domains, non-uniform gridding by local methods
(FDM, FEM, IgA, etc), under very mild assumptions leads to
a GLT sequence.

I Algebraic manipulation of GLT sequences result in a GLT
sequence with the symbol constructed using the same
algebraic manipulation on the symbols of the GLT sequences.

I If a GLT sequence is the result of a tensor product of two GLT
sequences, e.g. Tn(f ) = Tn1(f̃ )⊗ Tn2(f̂ ) then the symbol f is

a two level symbol f (θ1, θ2) = f̃ (θ1)⊗ f̂ (θ2).
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Example

{
−(κ(x)u′)′ + v ′ = g1(x)

u′ − ρv = g2(x)
, A =

[
K BT

B −ρM

]
,

K =


κ0 + κ1 −κ1
−κ1 κ1 + κ2 −κ2

κ2
. . .

. . .
. . .

. . . −κn
−κn κn + κn+1

+EN , κi = κ(xi ) ,

fK (θ) = 2− 1e îθ − 1e−îθ = 2− 2 cos(θ),

K = κ(x)Tn

(
fK (θ)

)
.
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Example

M =
h2

6


4 1
1 4 1

1
. . .

. . .
. . .

. . . 1
1 4

 , B = h


1
−1 1

−1
. . .
. . .

. . .

−1 1

 .

fM(θ) = 4 + 1e îθ + 1e−îθ = 4 + 2 cos(θ),

M =
h2

3
Tn

(
fM(θ)

)
,

BT = hTn

(
1− e−îθ

)
, B = hTn

(
1− e îθ

)
.
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Example

S = ρM + BTK−1B.

1

h2
f S(x , θ) =

ρ

3
Tn

(
2 + cos(θ)

)
+

Tn

(
1− e îθ

) 1

κ(x)Tn

(
2− 2 cos(θ)

)Tn

(
1− e−îθ

)
=
ρ

3
Tn

(
2 + cos(θ)

)
+

1

κ(x)
.
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Example
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Special attention to B in A

A =

[
K BT

B −M

]
I For discretizations, Q1Q1, B is a rectangular matrix.

I We can view B as the result of a downsampling of some
square matrix B̃;

B = HT B̃.

I Use B̃ in constructing the symbol of the exact Schur
complement as

SA = ρM + HT B̃K−1B̃TH.

I Consider the effect of the multiplication by H and HT on the
symbol of B̃K−1B̃T .
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Exact Schur complement - Elasticity

symmetric nonsymmetric
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Additive Schur complement approximation; Q1Q1

×10
-3

0 0.2 0.4 0.6 0.8 1 1.2

×10
-7

-1.5

-1

-0.5

0

0.5

1

1.5
Symbol elementwise Schur
eig(elementwise Schur)

×10
-3

0 0.2 0.4 0.6 0.8 1 1.2

×10
-4

-3

-2

-1

0

1

2

3

Symbol elementwise Schur
Symbol of the exact Schur



Conclusion
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Conclusion

I In the case of constant coefficients, the exact Schur
complement of a saddle point matrix is analyzed using GLT
sequences.

I The element-wise Schur complement approximation of the
matrices is studied using GLT sequences in case of elasticity.

I The GLT tool has to be considered as an extension for matrix
analysis.

I Future work:
I Use carefully the symbol to design high quality preconditioner

for Blocks K and SA
I Navier-Stokes and other vector problems to be considered,

with the idea of using the spectral information and the symbol
to obtain faster and more robust (preconditioned) iterative
solvers.



Thank you!


