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Motivation

The motivation of this work has come from the light scattering effects in
human retina.

Figure: Human Eye.
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Motivation

Retina

Thin layer backside of the eye;
Varies between 0.10 and 0.24 mm along the eye

Light sensitive part of tissue

Part of central nervous system;
Constituted by layers of neurons interconnected through synapses.

Figure: Histologic image of the retina
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OCT

Optical Coherence Tomography

High resolution imaging technique

Noninvasive

Analogous to ultrasound imaging, but using light instead of sound

Based on low coherence interferometry

Rely on differences in backscattering properties of small volumes
within the tissue.

A useful diagnostic tool in ophtalmologhy
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OCT

A- scan
When we change the position of the mirror, we get reflections from
different depths for the same lateral position.

B- scan
If we take multiple A-scans along the same axis, all of them parallel
between themselves, we have a bi-dimensional image of retina.

Figure: OCT B- Scan

OCT has the possibility of evaluating different elements in measuring
the retinal nerve fiber layer (RNFL)
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Motivation

Strong correlation between RNFL thinning and a reduction in tissue
birefringence

Waveguides with induced anisotropy may worth to be modeled as
they could play a role in biological waveguides

In order to model in detail the behavior of the electromagnetic wave as it
travels through the retina we arrive at solving the Maxwell’s equations in
anisotropic medium. 1

1A. Araújo, S. Barbeiro, L. Pinto, F. Caramelo, A. L. Correia, M. Morgado,
P. Serranho, A. S. C. Silva and R. Bernardes, “Maxwell’s equations to model
electromagnetic wave’s propagation through eye’s structures”, Proceedings of CMMSE
2013, vol. 1, Ian Hamilton and Jesús Vigo-Aguiar Eds., pp. 121-129, 2013.
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Maxwell’s Equations in Anisotropic Materials

2D Maxwell’s equations in transverse electric (TE) mode:

ε
∂E

∂t
= ∇×H,

µ
∂H

∂t
= −curl E, in Ω× (0, T ].

E = (Ex, Ey)

H = (Hz)

Ω is a two-dimensional domain.

µ: Isotropic permeability;

Anisotropic permittivity tensor

ε =

(
εxx εxy
εyx εyy

)
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Boundary condition

Perfect electric conductor boundary condition (PEC)

n× E = 0, on ∂Ω,

Perfect magnetic conductor boundary condition (PMC)

n×H = 0, on ∂Ω,

Silver-Müller absorbing boundary condition

n× E = cµn× (Hz × n), on ∂Ω,

where we assume the medium is isotropic near the absorbing
boundary , i.e.,

ε =

(
ε 0
0 ε

)
and the local light speed c is given by εµc2 = 1.
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Numerical Method

Space discretization:
Nodal Discontinuous Galerkin 2

Handle complex geometry
Adaptive mesh
High-order of accuracy and hp-adaptivity
Explicit semi-discrete form

Time Integration:
Leap-frog

Solving a system of equations in staggered grid points
Explicit 2nd order

2J. S. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Methods.
Algorithms, Analysis, and Applications, Springer-Verlag, New York, 2008.
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Leap-frog Discontinuous Galerkin

Computational domain:

Ω = ∪kTk
Tk, conforming triangular elements

Solution on each element Tk

(Ẽxk, Ẽyk, H̃zk)

Finite element space

VN = {v ∈ L2(Ω)3 : v|Tk ∈ PN (Tk)}

PN (Tk): Space of polynomials of degree less than or equal to N on
Tk
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Leap-frog DG Full Discrete Scheme

Divide the time interval [0, T ] into M subintervals;

tm = m∆t

∆t : Time step size

tm+1/2 = (m+ 1
2)∆t

Ẽmxk = Ẽxk(·, tm) , Ẽmyk = Ẽyk(·, tm) H̃
m+1/2
zk = H̃zk(·, tm+1/2).

Find (Ẽm+1
xk

, Ẽm+1
yk

, H̃
m+1/2
zk ) ∈ VN such that, ∀(uk, vk, wk) ∈ VN ,

(
εxx

Ẽm+1
xk

− Ẽmxk
∆t

+ εxy
Ẽm+1
yk

− Ẽmyk
∆t

, uk

)
Tk

=
(
∂yH̃

m+1/2
zk

, uk

)
Tk

+
( −ny
Z+ + Z−

(Z+[H̃m+1/2
z ]

−α(nx[Ẽmy ]− ny[Ẽmx ])), uk

)
∂Tk

, (1)
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Leap-frog DG Full discrete scheme

(
εyx

Ẽm+1
xk

− Ẽmxk
∆t

+ εyy
Ẽm+1
yk

− Ẽmyk
∆t

, vk

)
Tk

=
(
∂xH̃

m+1/2
zk

, vk

)
Tk

+
( nx
Z+ + Z−

(Z+[H̃m+1/2
z ]

−α(nx[Ẽmy ]− ny[Ẽmx ]), vk

)
∂Tk

, (2)

(
µ
H̃
m+3/2
zk − H̃m+1/2

zk

∆t
, wk

)
Tk

=
(
∂yẼ

m+1
xk

− ∂xẼm+1
yk

, wk

)
Tk

+
( 1

Y + + Y −
(Y +

(nx[Ẽm+1
y ]− ny[Ẽm+1

x ])− α[H̃m+1/2
z ]), wk

)
∂Tk
, (3)
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Numerical Flux

Flux : 3

Coupling between the elements

α ∈ [0, 1] : Control dissipation

α = 0; Dissipative central flux
α = 1; Upwind flux

Jump in the field values across the interfaces of the elements

[Ẽ] = Ẽ− − Ẽ+

[H̃] = H̃− − H̃+

Superscript “ + ”: Neighbouring element
Superscript “− ”: Local cell

3M. Konig, K. Busch and J. Niegemann, “The Discontinuous Galerkin Time-Domain
method for Maxwell’s equations with anisotropic materials”, Photon. Nanostruct.
Fundam. Appl. 8(4), pp. 303-309, 2010.
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Speed with which the a wave travels along the direction of the unit
normal, n

c± =

√
nT ε±n

µ± det(ε±)

Cell-impedances
Z± = µ±c±

Cell-conductances
Y ± =

(
Z±
)−1
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CFL Condition

If

∆t <
min{ε̄, µ̄}

max{CE , CH}
min{hk}

where

CE =
1

2
Cinv + C2

traceN
2

(
1 +

α

2 min{Zk}
+

β1
2 min{Zk}

+
β2
2

)

CH =
1

2
Cinv + C2

traceN
2

(
2 +

α

2 min{Yk}
+

β2β3
2 min{Yk}

+
β2
2

)
and β1 = α, β2 = 0 for PEC,
β1 = 0, β2 = 1, β3 = α for PMC,
and β1 = β2 = 1

2 , β3 = 1 for Silver-Müller boundary conditions.
the method is stable.
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Leap-frog DG Method

Theorem

Under the CFL condition:

∆t <
min{ε̄, µ̄}

max{CE , CH}
min{hk}

and the sufficient regularity of electromagnetic fields,

max
m≥1

(‖Em − Ẽm‖+ ‖Hm+1/2 − H̃m+1/2‖) ≤

(∆t2 + hN+α)(‖E0 − Ẽ0‖+ ‖H1/2 − H̃1/2‖).
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Numerical Results

Computational domain :
Unit square Ω = [−1, 1]2
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Figure: Nonuniform mesh of the unit square for K = 2310 triangles
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Numerical Results

The field distribution within the unitary cavity is given by

Ex(x, y, t) =
−π
ωεxx

. cos(πx). sin(πy). sin(ωt)

Ey(x, y, t) =
π

ωεyy
. sin(πx). cos(πy). sin(ωt)

Hz(x, y, t) = cos(πx). cos(πy). cos(ωt),

where

ω = π

√
1

εxx
+

1

εyy

The permittivity tensor ε is diagonal and characterized by

ε′ =

(
εxx 0
0 εyy

)
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Numerical Results

Consider symmetric positive definite with non-vanishing off-diagonal
elements

ε =

(
εxx εxy
εyx εyy

)
Eigenvalue decomposition of ε

ε = R(φ)ε′R(φ)T ,

where ε is a diagonal matrix whose diagonal entries are the eigenvalues of
ε.
Rotation angel:

φ = arccos
(√εxx − λ2

λ1 − λ2

)
.
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Numerical Results

ε =

(
5 1
1 3

)
Rotation angel: φ = π

8 .

Diagonal tensor :

ε =

(
5.4142 0

0 2.5858

)
Boundary conditions:

PEC: [Ẽx] = 2Ẽ−
x , [Ẽy] = 2Ẽ−

y , [H̃z] = 0

PMC: [Ẽx] = 0, [Ẽy] = 0, [H̃z] = 2H̃−
z

Silver-Müller
Z−H̃+

z = nxẼ
+
y − nyẼ+

x

Z−H̃+
z = (nxẼ

−
y − nyẼ−

x )
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Numerical Results

K Error Ex Rate Ex Error Ey Rate Ey Error Hz Rate Hz

8 1.56E-01 1.07E-01 2.27E-01

46 6.29E-03 3.67 7.50E-03 3.04 6.13E-03 4.13

146 1.09E-03 3.04 1.44E-03 2.86 6.31E-04 3.94

568 1.30E-04 3.12 1.68E-04 3.16 4.06E-05 4.04

2310 1.62E-05 2.97 2.06E-05 2.99 2.57E-06 3.94

K Error Ex Rate Ex Error Ey Rate Ey Error Hz Rate Hz

8 5.33E-02 5.55E-02 1.78E-01

46 2.46E-03 3.52 3.34E-03 3.21 3.81E-03 4.39

146 3.48E-04 3.38 4.35E-04 3.53 3.78E-04 4.00

568 2.41E-05 3.93 2.93E-05 3.97 2.48E-05 4.01

2310 1.49E-06 3.96 1.85E-06 3.94 1.50E-06 4.00
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Numerical Results
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Figure: Convergence in space: N order of convergency of Ex in the case of
central flux (α = 0), for different polynomial orders.
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Numerical Results
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Figure: Convergence in space: N order of convergency of Ex in the case of
upwind flux (α = 1), for different polynomial orders.
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Numerical Results
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Figure: Convergence in time: 2nd order convergence of Ex, Ey and Hz when
α = 1 (upwind flux) and PEC boundary conditions.
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Numerical Results
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Figure: Convergence in space: N order of convergency of Ex in the case of
central flux (α = 0), for different polynomial orders.
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Numerical Results
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Figure: Convergence in space: N order of convergency of Ex in the case of
upwind flux (α = 1), for different polynomial orders.
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Conclusion

Fully explicit leap-frog DG scheme for solving time dependent
Maxwell’s equations in anisotropic media which is in our application
of interest.

Conditionally stable

Convergent:

Optimal order of convergence O(hN+1,∆t2) for upwind flux
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