CFD in water turbines — an HPC challenge

Hakan Nilsson

Chalmers, Dept. of Applied Mechanics, Div. of Fluid Dynamics, 412 96 Gothenburg
hani@chalmers.se,
WWW home page: http://wuw.tfd.chalmers.se/ hani

Abstract. 50% of the electric power in Sweden is generated by water
power. Many of the power plants in Sweden are getting old and some ma-
jor refurbishments are coming up. Due to the development of numerical
methods and computer power the last decades Computational Fluid Dy-
namics (CFD) is to a large extent used as a design tool for this purpose.
The general features of the flow in water turbines can be resolved with
todays methods and computational power, but in order to study the flow
in detail enormous HPC facilities and new methods are required.

The present work presents the water turbine field with its HPC require-
ments, shows some state-of-the-art results from OpenFOAM CFD analy-
sis, and presents a parallel performance analysis on a Linux cluster using
an ordinary gigabit interconnect v.s. an Infiniband interconnect.

1 Water turbines

Water turbines are designed to extract energy from the water flowing through
the water turbine runner. The availabe power is determined by the difference in
the elevation of the tail water and head water multiplied with the water mass
flow and gravity. In reaction turbines the flow enters the runner with a swirl
and the runner is designed to remove that swirl before the water enters the draft
tube (see figure 1). The draft tube is a diffuser which recovers the static pressure
and leads the water towards the tail water.

1.1 HPC challenges

Water turbines have complicated geometries where the flow in different parts
of the turbine influences the flow in other parts of the turbine. To be able to
set valid boundary conditions and to model the flow correctly it would thus be
ideal to include all the geometry from head water to tail water. The Reynolds
numbers in water turbine applications are always high, so the resolution of the
computational mesh must be fine where large gradients in the flow occur. These
requirements together yields an enourmously large mesh. In addition to this there
are both stationary and rotating parts in water turbines, which requires rotor-
stator interaction and unsteady computations. The thin wakes after stayvanes,
guide vanes and runner blades affect the details of the flow and should also be
resolved. Close to the runner blades cavitation often occurs, and the numerical
methods to resolve those effects require even more cells and shorter time steps.
There is probably no limit on the HPC requirements for flow in water turbines.

Fig. 1. CAD model of the Holleforsen Kaplan turbine model and visualizations of the
flow in the runner and draft tube.

2 The OpenFOAM CFD tool

The newly released OpenFOAM (Open Field Operation and Manipulation) tool
has been used in the present study. OpenFOAM is an OpenSource object oriented
C-++ tool for solving arbitrary PDE’s. It includes preprocessing (grid generator,
converters, manipulators, case setup), postprocessing (using OpenSource Par-
aview) and many specialized CFD solvers are implemented. Some of the more
specialized features that are included in OpenFOAM, and are important to the
flow in water turbines are: sliding grid, moving meshes, two-phase flow (Lan-
grange, VOF, Euler-Euler) and fluid-structure interaction. OpenFOAM runs
in parallel using automatic/manual domain decomposition. In addition to the
source code, OpenFOAM gives access to an international community of Open-
FOAM researchers through the discussion board at the www.openfoam.org home

page.

3 The studied cases

In the present work two parts of the Holleforsen turbine model has been modeled,
the runner and the draft tube (see figure 1). The two parts have been modeled
separately, but the aim is to simultaneously model all parts including the spiral
casing, the runner and the draft tube. The present runner computations have an
inlet boundary condition from a previous computation of the flow through the
guide vanes. Steady computations have been made for both a periodic part of the
runner (1/5) and the whole runner. The present draft tube computations have
inlet boundary conditions from detailed LDA measurements. Both steady [1]
and unsteady computations have been made for the draft tube. In all cases the
standard k£ — € turbulence model is used. The sizes of the meshes used are, 450
000 cells for the periodic runner computation, 2 240 000 cells for the full runner
computation, and 1 000 000 cells for the draft tube computations. These are all
wall-function grids that do not resolve the boundary layers in detail.

4 Parallel performance

A parallel performance test has been made using the draft tube case described
above, with about 10® cells. The decompositions of the domain into 2, 4, 8 and
16 subdomains were made using the automatic load-balanced decomposition
(Metis) in OpenFOAM. The Linux cluster was a 4 node Dual socket AMD
Opteron 280 (2.4 GHz, dual core) with 4GB DDR400 RAM, i.e. 4 cores (CPUs)
per node and a total of 16 cores (CPUs). Two different interconnects were tested,
a Gigabit Ethernet through an HP ProCurve 2824 Switch, and an Infiniband
(PCI-X) through a Silverstorm 9024 Switch. The SuSE Linux Enterprise Server,
Service pack 3 operating system was used. The analysis has been made together
with Peter Rundberg at Gridcore (www.gridcore.se).

The wall clock times were measured for three iterations (no I/0), and are
presented in table 1. The table also shows the speed-up normalized by the single
CPU run for each configuration, and the speed-up when using the Infiniband in-
terconnect instead of the Gigabit interconnect (based on the speed-up columns
in the tables). The reason for the difference between the single CPU runs is
unknown, but its presence is not unexpected. Many things can influence compu-
tational speeds to this order of magnitude (~1%). The reason for the difference
between the runs with 2 CPUs on 1 node is also unknown. The interconnect
should not be important in this case. It has however been observed that some-
times when running two processes on the same node they end up at the same
socket, which influences the computational speed to this order of magnitude
(~10%). Later versions of the Linux kernel should have fixed this problem. An
effect related to this can be seen in table 1, where the speed-up is increased
if the computations are spread over as many nodes as possible. It is unknown
why IBA has a worse tendency than ETH when distributing the 4 CPU case on
different numbers of nodes. The more nodes involved, the more important the
interconnect. The table however suggests that the Gigabit interconnect is the
best in the 4 CPU case.

4

Table 1. Parallel performance using 1Gbit Ethernet (ETH) and Infiniband (IBA)
interconnects. Packed vs. spread CPU distribution (the distribution of the processes
on the nodes).

CPU |# nodes|ETH (s)|IBA (s)| ETH IBA el
(speed-up)|(speed-up)|(based on speed-up)
1 1 165 163 1.0 1.0 1.0
2 1 86 78 1.9 2.1 1.1
2 2 85 81 1.9 2.0 1.0
4 1 76 72 2.2 2.3 1.0
4 2 64 62 2.6 2.6 1.0
4 4 53 56 3.1 2.9 0.9
8 2 43 41 3.8 4.0 1.0
8 4 41 35 4.0 4.7 1.2
16 4 23 20 7.2 8.2 1.1

5 Conclusions

The OpenFOAM CFD tool has proven to be a good platform for high quality
computations of flow in water turbines. One major benefit of using OpenFOAM
instead of any commercial CFD tool is that the full source code is available. This
makes possible development of methods that are out of reach in the commer-
cial tools. Another benefit is that OpenFOAM is free of charge, which makes
possible international collaboration on a common platform without expensive
licenses. The total expertice in the OpenFOAM discussion group is enormous.
OpenFOAM is also a competitor with the commercial softwares in terms of ad-
vanced features. The included features grow rapidly through contributions from
the advanced users, which makes OpenFOAM a true competitor to both com-
mercial tools and in-house research codes.

Infiniband does not significantly improve the speed-up for this application,
compared with the gigabit Ethernet interconnect. There is no obvious trend
showing that Infiniband is preferable for all decompositions and process distri-
butions. The largest improvement is seen when the case is distributed on as
many CPUs as possible. When distributing the case on 16 CPUs the Infiniband
interconnnect has a ~10% speed-up compared with the corresponding gigabit
Ethernet computation. Infiniband would probably benefit most from a distri-
bution on more CPUs. The best configuration seems to be single CPU nodes
connected with a high speed interconnect. However, this will affect the price of
the system, the cooling requirements, the space requirements etc.

References

1. Nilsson, H., Page, M.: OpenFOAM SIMULATION OF THE FLOW IN THE
HOLLEFORSEN DRAFT TUBE MODEL. In Proceedings of Turbine-99 III (2005)

