
Integrated runtime measurement summarisation

and selective event tracing for

scalable parallel execution performance diagnosis

Brian J. N. Wylie, Felix Wolf, Bernd Mohr, and Markus Geimer

John von Neumann Institute for Computing (NIC),
Forschungszentrum Jülich, D-52425 Jülich, Germany

kojak@fz-juelich.de

Abstract. Straightforward trace collection and processing becomes in-
creasingly challenging and ultimately impractical for more complex, long-
running, highly-parallel applications. Accordingly, the kojak measure-
ment system for mpi, openmp and shmem parallel applications is incorpo-
rating runtime management and summarisation capabilities. This offers
a more scalable and effective profile of parallel execution performance,
for an initial overview and to direct instrumentation and event tracing
to the key functions and callpaths for comprehensive analysis. The de-
sign and re-structuring of the revised measurement system are described,
highlighting the synergies possible from integrated runtime callpath sum-
marisation and event tracing for comprehensive scalable parallel execu-
tion performance diagnosis.

1 KOJAK event tracing and analysis

The kojak toolkit provides portable automated measurement and analysis of
hpc applications which use explicit message-passing and/or implicit shared-
memory parallelisations with mpi, openmp and shmem [1, 2]. Via interposition
on library routines, preprocessing of source code directives/pragmas, or inter-
facing with compilers’ function instrumentation, a comprehensive set of com-
munication and synchronisation events pertinent to the execution of a parallel
application can be generated, augmented with timestamps and additional metric
measurements, and logged in trace files. These time-ordered event traces from
each application thread and process are subsequently merged into a global time-
ordered trace for analysis, either as an automatic rating of performance property
patterns or interactive time-line visualisation. Despite the demonstrated bene-
fits of the event tracing approach, a key limitation is the trace volume which is
directly proportional to granularity of instrumentation, duration of collection,
and number of threads/processes [3].

2 Runtime measurement summarisation

An approach without the scalability limitations of complete event tracing is
runtime measurement summarisation, which has been extensively investigated by



2

the tau project [4]. As each generated event is measured, it can be immediately
analysed and incorporated in a summary for events of that type occurring on
that program callpath (for that thread/process). Summary information is much
more compact than event traces, with size independent of the total collection
duration (or the frequency of occurrence of any function): it is equivalent to a
local profile calculated from the complete event trace, and combining summaries
produces a global callpath profile of the parallel execution.

For measurements which are essentially independent for each process, such as
interval event counts from processor hardware counters, runtime summarisation
can effectively capture the profile without the overhead of rendering a bulky
vector of measurements. On the other hand, performance properties related to
inter-process interaction, such as the time between when a message was sent and
available to the receiver and its eventual receipt (i.e., late receiver), can only
be determined from combining measurements that is not practical at runtime.
Fortunately, the inter-process performance properties are generally specialised
refinements of the process-local ones available from runtime summarisation.

Doing this straightforward analysis at runtime during measurement, and in
parallel, reduces the need for large files and time-consuming post-processing and
results in a timely initial overview of the execution performance.

Runtime measurement processing and summarisation also offers opportuni-
ties to decide how to deal with each event most effectively as it is generated.
Frequently encountered events may be candidates to be simply ignored, due to
the overhead of processing measurements for them. Other events may have a very
variable cost which is typically small enough to be negligible but occasionally
significant enough to warrant an explicit detailed record of their occurrence.

Alternatively, a profile summary from which it is possible to determine how
frequently each function is executed, and thereby assess their importance with
respect to the cost of measurement, can be used as a basis for selective instru-
mentation which avoids disruptive functions. Subsequent measurements can then
benefit from reduced perturbation for more accurate profiling or become suitable
for complete event tracing.

Runtime measurement summarisation therefore complements event tracing,
providing an overview of parallel execution performance which can direct instru-
mentation, measurement and analysis for more comprehensive investigation.

3 Integration of summarisation and tracing

An integrated infrastructure for event measurement summarisation and trac-
ing offers maximum convenience, flexibility and efficiency. Applications instru-
mented and linked with the measurement runtime library can be configured
to summarise or trace events when measurement commences, and subsequent
measurements made without rebuilding the application. It also becomes possi-
ble to simultaneously combine both approaches, with a general overview profile
summary refined with selective event traces where they offer particular insight.



3

Along with the practical benefit of maintaining a single platform-specific
measurement acquisition infrastructure, sharing measurements of times, hard-
ware counters and other metrics avoids duplicating overheads and potential ac-
cess/control conflicts. It also facilitates exact comparison of aggregate values
obtained from both approaches.

Some form of runtime summarisation is probably always valuable, perhaps
as a preview or compact overview. Metrics calculated from hardware counter
measurements are generally most effectively captured in such summaries. Ex-
tended summaries with additional statistics calculated may be an option. Only
in the rare case where the runtime overhead should be reduced to an absolute
minimum is it expected that summarisation would be completely disabled.

Unless it can be readily ascertained that the application’s execution char-
acteristics are suitable for some form of event tracing, the default should be
for tracing to initially be inactive. When activated, simply logging all events
would provide the most complete execution trace where this was desired (and
from which a corresponding summary profile could be calculated during postpro-
cessing analysis). Alternatively, selective tracing may be based on event char-
acteristics (such as the event type or, a measurement duration longer than a
specified threshold), or based on analysis from a prior execution (e.g., to filter
uninteresting or overly voluminous and obtrusive measurements).

Furthermore, the availability of measurements for the entry of each new
function/region frame on the current callstack, allows for late determination
of whether to include them in an event trace. For example, it may be valuable to
have a trace of all communication and synchronisation events, with only func-
tion/region entry and exits relevant to their callpaths (and all others discarded
at runtime). The callstack and its entry measurements can be tracked without
being logged until an event of interest is identified (e.g., by its type or dura-
tion), at which point the (unlogged) frame entry measurements from the current
callstack can be used to retroactively log its context (and mark the associated
frames such that their exits will also be logged), while new frames subsequently
encountered remain unlogged (until and unless similarly identified for logging).

If desired, separate dedicated libraries for summarisation and tracing could
also be provided and selected during application instrumentation preparation.

4 Implementation of revised measurement system

kojak’s measurement runtime system formerly was based on an integrated event
interfacing, processing and logging library known as epilog. Files containing
definitions and event records were produced in epilog format, and manipulated
with associated utilities (such as elg_merge). Execution traces can have per-
formance properties automatically analysed with expert, or converted to other
trace formats for visualisation with third-party tools.

The epilog name, file format and utilities are retained in the revised design of
the measurement system, but only for the logging/tracing-specific component of
a larger integrated summarisation and tracing library, epik. A new component,



4

epitome, is dedicated to producing and manipulating totalised measurement
statistical summaries. Both epilog and epitome share a restructured common
event processing and interfacing runtime system, episode, which manages mea-
surements for processes and threads, attributes them to generated events, and
determines which summarisation and/or logging subsystems they should be di-
rected to (based on the runtime measurement configuration).

To facilitate diverse measurement collections and analyses, and avoid the
clutter of multiple files appearing in the program’s working directory, a new
experiment archive directory structure has been introduced. A unique directory
is created for each measurement execution to store all of the raw and processed
files associated with that measurement and its analysis. Instead of applying each
kojak tool to files of the appropriate type, the tools can now also accept the
name of the experiment archive directory, from which the appropriate files are
transparently located and into which new files are deposited. This new structure
makes it easier for the tools to robustly determine the integrity of the experiment
measurement/analyses, and should also be easier for users to manage (e.g., when
they wish to move an experiment to a different system for storage or analysis).

5 Further and future work

Callpath summary profiles will be formatted for presentation and investigation
with the same cube analysis browser used for the reports produced by the ex-

pert automatic event trace analyser. Direct comparison will thereby be possible
using the cube algebra utilities, and will facilitate determination of instrumented
functions which are problematic, due to their frequency of execution or measure-
ment overheads. Selective instrumentation or measurement configuration can
then be employed to circumvent those functions (or callpaths) in subsequent
performance measurement executions, to obtain the highest quality analysis in a
reliable, scalable manner. The effectiveness of the new kojak capabilities are be-
ing evaluated on a range of hpc systems and applications, and will be compared
with other profiling and tracing toolsets, such as tau.

References

1. Forschungszentrum Jülich GmbH (ZAM) and the University of Tennessee (ICL):
kojak: Kit for Objective Judgement and Knowledge-based detection of performance
bottlenecks. //www.fz-juelich.de/zam/kojak/

2. Wolf, F., Mohr, B.: Automatic Performance Analysis of Hybrid MPI/OpenMP Ap-
plications. J. Systems Architecture, 49(10–11). Elsevier (2003) 421–439

3. Wolf, F., Freitag, F., Mohr, B., Moore, S., Wylie, B. J. N.: Large Event Traces
in Parallel Performance Analysis. Proc. 8th Workshop on Parallel Systems and
Algorithms (PASA’06, Frankfurt/Main, Germany). Lecture Notes of Informatics,
Gesellschaft für Informatik. (to appear)

4. Schende, S. S., Malony, A. D.: The TAU Parallel Performance System. Int’l
J. High Performance Computing Applications. SAGE Publications (to appear)
//www.cs.uoregon.edu/research/paracomp/papers/ijhpca05.tau/TAU_ACTS_SS.pdf



5

A Experiment archive issues

The proposed new experiment archive directory contains subdirectories for (unmerged)
definitions and event traces for each process (or alternatively for threads). These files
may be analysed in parallel, or if they are merged into global files, then the unmerged
files and their containing directory can be removed. Experiment archive directories
are recognisable via a specific prefix in their names, with the remainder specifiable
by the user when measurement commences. After the initial measurement collection
in files on local/distributed filesystems, the experiment directory provides an archive
for subsequent processing and analyses. The directory and its contents can be moved
to other systems for storage or analysis, and removed when no longer required, using
regular Unix commands.

During migration from the former trace-specific, unified measurement files for se-
quential analysis to the new multi-format, split files for distributed analysis, several
transitional approaches are possible.

Each tool that formerly required a specific file of the corresponding type can be
augmented to ‘automatically’ locate such files inside a specified experiment directory,
and it should be expected that any files that are produced would also be placed in
the experiment directory by default. If this is applied to the trace conversion tools
(elg2vtf3 and elg2otf), that would require that the precise location of the resulting
files be documented and that the path to that location be provided to readers such
as VAMPIR (who can’t be expected to understand the experiment archive directory
layout).

An alternative would be to provide an option to elg merge (via an environment
variable) which reverts to the former behaviour: i.e., although the experiment archive
directory is used internally, the resulting merged trace file is named as before directly
in the (specified) global directory, after which the archive directory and its contents
are removed.

To avoid the need to merge event traces as required by the current EPILOG
reader/writer interface, it could be extended to also handle experiment directories
and the split files contained therein, providing a unified view to tools using it, such
as the format converters. (Note that when an EPILOG trace file is explicitly specified
it should be considered a complete merged trace, whereas a trace file automatically
located inside an experiment directory might not contain definitions if these have been
split into a separate global definitions file.)

Alternatively, the old tools could be deprecated (with their use restricted to the
former files and formats), and a different set of equivalent tools/utilities could be
provided exclusively to handle the new experiment archive directory (and ignore older
non-archive files).

The EARL/EXPERT analyser is expected to remain sequential, in due course
being complemented with (and perhaps ultimately replaced by) a parallel analyser
(PEARL/SEXPERT?) which would directly exploit unmerged trace files.

While the contents of the experiment archive directory are regular visible files (and
subdirectories), it is instructive to consider the archive as an opaque object (which
might be a database, for example). Direct modification or re-arrangement of its contents
should therefore be discouraged, with access via a higher-level interface that doesn’t
expose such implementation detail.

Experience with the new experiment archive, particularly on systems with highly-
parallel microkernel-based architectures, is required to evaluate its effectiveness and
possible portability issues. Further, it should be included in an upcoming beta release



6

to provide an opportunity for others to use and familiarise with it (particularly in the
context of third-party tools and utilities) and provide feedback.

Currently, the naming of the experiment archive directory (and its contents) are
provisional, and existing EPILOG environment variables have been (ab)used to control
renaming and relocation. Once internal naming issues have been resolved, the KOJAK
USAGE documentation should be updated to reflect the new behaviour, to the extent
that it affects what arguments are given to the various tools.

Some specific early questions:

Is an elg merge option necessary to revert to the former naming behaviour? No,
we only want to document/support the new behaviour, and solicit feedback on that.
When desired, it’s straightforward for users to copy/rename the new files to their old
locations/names, i.e., $ELG_PFORM_GDIR/$ELG_FILE_PREFIX.elg.

Is the extended EPILOG reader/writer interface for the new archive directories
expected to be appropriate for external tools? Yes, it should be, and if not we need
to determine (and fix) this sooner rather than later.

Will external tools be able to locate the files they require from within the exper-
iment archive directory? We need to adequately document the necessary parts of
the new archive directory, in particular, the names of the files that are intended to be
externally visible/usable, e.g., epik.elg, epik.cube, epik.vpt (or epik.vtf) and epik.otf.
The OTF auxilliary/rank files created by EPIK (either produced directly by libepik or
converted by elg2otf) should be in a dedicated EPIK/OTF subdirectory: the epik.otf
index file may also be in that subdirectory, or directly in the EPIK archive directory
itself.

Should external tools (such as VAMPIR) be encouraged to write their own files
into the archive directory? Probably not, though once the directory archive is docu-
mented it can’t be prevented. Provided they respect the archive directory layout, and
use a dedicated subdirectory for their internal files, they are free to work with EPIK
archive directories as they see appropriate.

What about the CUBE algebra utilities? These generic utilities read and write
CUBE-format files, and are not intended to be KOJAK (or EPIK) specific. An ex-
ample of this, is that the CUBE browser doesn’t automatically run EXPERT when
provided with an EPILOG trace: in addition to accepting EPIK experiment directories
directly, the ‘kanal’ utility handles both EPILOG and CUBE files, running EXPERT
and CUBE as required. The CUBE algebra utilities can be extended to automatically
locate CUBE files from within EPIK directories, but the resulting CUBE files are not
part of any of the input measurements. Future EPIK algebra utilities might merge or
otherwise manipulate EPIK measurement directories.

Should the documented EPILOG (v1) format be changed? Probably not at this
stage, though future extensions and modifications may well suggest a new EPILOG v2
format, at which point, disjoint (ASCII-format) definitions and (definition-less) event
traces as well as distributed (unmerged) event traces may be included. Until then,
externally visible EPILOG traces should contain merged definitions and events, and
ELG tools (including EARL/EXPERT) should continue to be backward-compatible in
supporting such traces.


