Application Specific Compression for Remote
Visualization of Genomics Applications

Lars Ailo Bongo', Kai Li2, Olga Troyanskaya?, Tore Larsen', and Grant
Wallace?

! Department of Computer Science, University of Tromsg, Norway
2 Computer Science Department, Princeton University, NJ, USA
{lbongo, 1i, ogt, tore, gwallacel}@cs.princeton.edu

Abstract. Sensitive data can be shared by only sharing visualizations.
However, smooth remote interaction with the data requires higher band-
width than practical in a WAN. We describe and present preliminary
results for compression schemes exploiting redundancy in data transmis-
sions to reduce bandwidth usage.

1 Introduction

For remote collaboration where sensitive data is analyzed, management, secu-
rity, and privacy concerns can be simplified by keeping all the data at a single
server and only send analyzed data in the form of visualizations to clients. How-
ever, the client users should still be able to smoothly interact with high quality
visualizations. Therefore, high resolution and frequent updates are needed. But
the required bandwidth is not practical for wide area networks (WANSs).

Existing solutions reduce bandwidth by only sending rectangles of updated
pixels. But still, interactions such as scrolling may change a large portion of the
screen. However, there are many redundant transmissions, since the content of
the updated often region has often been sent to the client earlier, for example
when scrolling up and down. In this paper we examine if we can exploit the
redundancy to reduce bandwidth. As a case study we use Genomics applications,
since these visualize sensitive data using high resolution bitmaps.

2 Compression for Remote Visualization

Many visualization tools use the thin-client approach including VNC [5], Mi-
crosoft Remote Desktop and Microsoft LiveMeeting. Usually, these tools are
targeted for business environments where users collaborate in task such as writ-
ing a document. This type of interaction has low bandwidth requirements and is
handled well by most existing thin-client solutions. We extend VNC to handle
interaction requiring higher bandwidth.

Figure 1 shows the architecture of a VNC server and VNC client. The VNC
viewer (client) sends user input to the VNC Server, which applies these to ap-
plication running on the server. The VNC server is also responsible for detecting

NN & VNC Server
GPR1 [
NONE VNC Viewer
BSC 1 L
NOKE [=| g VNC (detect update) =
PRU7 |
“/STNIE VNC protocol layer
anchoring layer
SIR2
PRP1L VNC
NS VNC protcol layer
MEF 1 . .
NONE Fingerprint layer
o content
NONE: Fingerprint layer content
Sk " e <D
MCHI Fingerprint earlier?
NehE fingerprint:
NONE TCP/IP
RAGE Teee content
RADS,
L
i —— I .

Fig. 1. A visualization from the GenVaND tool and the system architecture.

changes to screen, encode these changes using one of the VNC protocols, and for
sending the encoded changes to the VNC viewer. The viewer then decodes and
draws the received data.

We have extended VNC with a fingerprinting and anchoring layer. The an-
choring layer is responsible for dividing the updated screen regions into subre-
gions that allows finding repeated content. The fingerprinting layer calculates a
fingerprint for each subregion and checks if a subregion with a similar fingerprint
has been sent earlier. If so, only the fingerprint is sent. When the fingerprinting
layer receives only a fingerprint, it uses the fingerprint as an index to a cache
to get the content of the fingerprint. The content is then encoded using a VNC
protocol and sent to the VNC viewer which updates the client visualization.

We use 32 bit Rabin fingerprints [4, 2, 1] as anchors to find regions of re-
dundant data. Using fingerprints to reduce the data sent over a WAN has been
used for example to improve Web performance [6], or for a network file system
designed for low-bandwidth networks [3].

Key to finding repeatable content is to select anchoring points that do not
change when only a part of the screen is updated. We evaluate anchoring schemes
along three dimensions: (i) data compression, (ii) added overhead, and (iii) cache
storage at the client. In this paper we evaluate three schemes:

1. Fixed hextile anchoring, where anchoring points are fixed to 16x16 pixel rect-
angles at fixed screen coordinates.

2. Content hextile anchoring, where anchoring is based on fingerprints calcu-
lated for 16x16 pixel regions of the data being displayed on the screen.

3. Content based 1D byte stream anchoring, where the 2D screen is treated as
a 1D byte stream (in row order).

3 Preliminary Evaluation Results

We measured the bandwidth requirements for remote visualization of a Genomics
application, and we compared the bandwidth reduction of the three compression
schemes described in the previous section.

For benchmarking we use an automated GUI testing tool that allows record-
ing and playing back user input events such as mouse movement and key types.

100 T

90

80 [Diff Pixels —+— 420
Diff Hextiles ---x---
i i Zlib Hextiles ------
70 i i Fixed hextile & 430
o Content hextile ——m-—
W Bytestream ---o---
60 | \ VNC (measured) - - 4 40

MBytes/sec
L
o
o
VNC MBytes/sec

40 |

30

10 -

0 B e g B R e By gk 100
Open M/R IRscroll 2D Buttons 3D drag 3D Buttons
Time

Fig. 2. Bandwidth usage for uncompressed, hextile, actual VNC (top), zlib compressed,
fixed hextile anchoring, content based hextile anchoring, and 1D byte stream anchoring.

For performance experiments the time between two events is important. Also,
this time should increase if the remote visualization is slow. Since the existing
non commercial tools do not fulfill these two requirements we wrote our own
tool. To record data we instrument our Genomics applications, all written in
Java, with classes implementing the AWTEventListener interface. For playback
we use the Java util.Robot class. We use pixel based synchronization to ensure
that the client driving the interaction does not proceeds until its display is co-
herent with the servers display. Screens are synchronized at events 50 ms apart
in the recorded session.

We use the xfdvnc VNC server since it supports OpenGL, which is used by
one of our tools for 3D visualization. The server was run on a Dell Dimension
8400 with a 2.8 GHz Pentium 4 with 2 GB RAM. The VNC viewer on a Compaq
Evo N620c laptop with a Pentium-M 1.5 GHz processor and 1 GB RAM. Both
run Fedora Core 4. In addition we used an IBM eServer running FreeBSD with
Dummynet to emulate WAN networks.

To get realistic traces we instrumented three widely used genomic applica-
tions: GeneVaND, Java TreeView and TIGR MeV. These were then used for
real genomic analysis. We also recorded a synthetic user interaction for the
GeneVAnD application, with time periods where the user does only one type
of data manipulation (type, resize windows, move windows, scroll 2D model,
change 2D model visualization settings, and drag 3D model). All results pre-
sented in this paper are for this session.

Figure 2 shows bandwidth requirements for the synthetic user session. Band-
width requirements depends on the type of interaction, with scrolling the 2D

model having the highest bandwidth requirement. The bandwidth requirements
are much larger than available bandwidth on todays WANs. Using iperf we mea-
sured bandwidth from Princeton to: MIT: 2.1 MBytes/sec, GA in San Diego:
0.4 MBytes/sec, and Tromsg in Norway: 0.2 MBytes/sec.

On a Gigabit Ethernet xf4vnc is not able to utilize more than 1.25 MByte/sec
of bandwidth due to VNC server performance. Other servers such as UltraVNC
on Windows have better performance and can provide smoother interaction.

Figure 2 shows how VNC reduces bandwidth by skipping updates, how zlib
compression reduces bandwidth, and how our different history based compression
schemes reduce bandwidth. One single compression scheme is not best all the
time. But the total compression ratios are similar: fixed hextile (0.11), content
based hextile (0.12), bytestream (0.13).

The storage requirements and number of fingerprinted regions for the anchor-
ing schemes differ. Fixed hextiles requires 36.2 MBytes with 49837 fingerprints,
content based hextiles 41.9 MBytes with 13030 fingerprints, and bytestream
34.1 MBytes with 60600 fingerprints. We are analyzing how these factors in-
fluence the performance improvement. All compression results were calculated
offline using screenshots captured during playback of the synthetic trace.

4 Conclusion and Future Work

We have shown why compression is necessary for remote visualization of Genomic
data over WAN, and that existing compression schemes are either inefficient or
reduces quality of service. Instead we propose using content based fingerprint-
ing to avoid sending redundant data. We describe four anchoring schemes for
detecting redundant regions of updated screen pixels. Initial results shows that
our compression reduces bandwidth usage. Also, we find that VNC server per-
formance is limited by the server when network bandwidth is 10 Mbit or better.

Currently we are systematically analyzing the bandwidth reduction of other
anchoring schemes, in addition to implementing a prototype which will be used
to measure performance improvements.

References

[1] BrRODER, A. Some applications of rabin’s fingerprinting method, 1993.

[2] MANBER, U. Finding similar files in a large file system. In Proceedings of the
USENIX Winter 1994 Technical Conference (1994), pp. 1-10.

[3] MUTHITACHAROEN, A., CHEN, B., AND MAZIERES, D. A low-bandwidth network
file system. In ACM SOSP ’01 (2001).

[4] RABIN, M. Fingerprinting by random polynomials. Tech. Rep. 15-81, Harvard
University, 1981.

[5] RicHARDSON, T., STAFFORD-FRASER, Q., WooD, K. R., AND HOPPER, A. Vir-
tual network computing. IEEE Internet Computing 2, 1 (1998), 33-38.

[6] SPriNGg, N. T., AND WETHERALL, D. A protocol-independent technique for elim-
inating redundant network traffic. In SIGCOMM (2000), pp. 87-95.

