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Abstract. In the finite element method (FEM) the accuracy of the
solution is controlled either by the mesh size or the polynomial degree
of the elements or both. In hp-FEM it is often advantageous to employ
geometric mesh grading together with varying polynomial order of the
elements. Conforming strongly graded meshes are difficult to generate
automatically. The fundamental idea behind the adaptive-shape FEM
is to automatically adapt the basis functions to non-conforming meshes
thus resulting in a fully continuous method. This allows us to use highly
graded non-conforming meshes without discontinuous methods.

1 Introduction

Here the hp-FEM as defined by Szabo and Babuska in [1] is considered. The idea
of modifying the method to accomodate the non-conforming meshes appears
first in work by Demkowicz and others in [2] and is further expanded in their
subsequent papers. The new approach outlined here does not require any changes
to the standard hp-FEM infrastructure and can be added to any existing system
with reasonable effort. Solin and others in [3] discuss the implementation issues of
the standard hp-FEM including the 3D case. In this paper only the 2D adaptive
shapes are discussed.

2 Adaptive Shapes

Let us consider the basic construction of the adaptive shapes with an example. In
Fig. 1 two non-conforming meshes are shown. In the left-hand side case (Fig. 1a)
the reference element is modified so that the shape functions associated with the
split edge are replaced with those conforming to the shapes of the neighbouring
elements. Detection of the hanging nodes and the proper handling of the split
edges can be expensive and difficult to do robustly in practice.

For p-type quadrilaterals the number of the shape functions is 1
2 (p2 + 3p +

6), p ≥ 4. In this example there will be (p−1)+1 = p extra shapes corresponding
to one new edge and node, respectively. So, at p = 4 the split element will have
five nodes and edges, and one bubble, in total 5 + 5 · (4 − 1) + 1 = 21 instead
of the ususal 17 shapes. These shapes are shown in Fig. 2. Note that the nodal
shape associated with the new node is shown in two parts (Fig. 2e and Fig. 2f).
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(a) Mesh 1 (b) Mesh 2

Fig. 1: Two admissible meshes.

2.1 Integration

Let us denote the shape functions as φj . On the reference element K̂ the supports
of the shapes are not necessarily the same, that is, in general

supp φi != supp φj , i != j.

Thus, the intersections of the supports must be computed for every inner product
〈·, ·〉: ∫

K̂
〈φi,φj〉 da =

∫

Ω(φi,φj)
〈φi,φj〉 da, (1)

where Ω(φi,φj) = supp φi ∩ supp φj , the integration domain.
We choose the supports so that for every edge e of the reference element K̂

the identity, ⋃

i

supp φe
i = K̂ (2)

where φe
i are the shapes associated with the edge e, holds. On quadrilaterals,

every support is simply a rectangle (See Fig. 2), and even in the case of multiple
split edges, computation of Ω(φi,φj) is straightforward. On triangles, however,
the situation is more complex.

In Fig. 3 three images of the Cartesian grid over a quadrilateral reference
element under bilinear maps that share the characteristic that one of the edges
collapses onto a point in the triangle are shown. Using these maps, we can
construct every conceivable configuration for the reference triangle as a map
from the quadrilateral one.

In Fig. 4 two examples of split edge configurations on triangles are shown.
In Fig. 4a the base has been split in two and the right-hand side in three parts.
Finally, in Fig. 4b the integration domains for a 7 × 7 split configuration are
illustrated.
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(a) Node 1
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(b) Node 2
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(c) Node 3
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(d) Node 4
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(e) Node 5a
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(f) Node 5b
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(g) Edge 1a: p=2
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(h) Edge 1a: p=3
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(i) Edge 1a: p=4
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(j) Edge 1b: p=2
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(k) Edge 1b: p=3
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(l) Edge 1b: p=4
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(m) Edge 2: p=2
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(n) Edge 2: p=3
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(o) Edge 2: p=4
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(p) Edge 3: p=2
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(q) Edge 3: p=3
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(r) Edge 3: p=4
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(s) Edge 4: p=2
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(t) Edge 4: p=3
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(u) Edge 4: p=4
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(v) Bubble: p=4

Fig. 2: Quadrilateral with one split edge: p=4.
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(a) Map 1
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(b) Map 2

-1 -0.5 0.5 1

0.25

0.5

0.75

1

1.25

1.5

1.75

(c) Map 3

Fig. 3: Triangle maps.

(a) Triangle 1 (b) Triangle 2

Fig. 4: Triangle with two split edges.

3 Conclusions

There are many problems where exponential grading is advantageous. The strong
layers in shell problems are of particular interest here. The adaptive-shape ver-
sion of the hp-FEM presented here is a practical variant for such problems.

All modifications to the standard method are on the reference element. There-
fore adaptive shapes are relatively simple to add to existing systems. The hidden
cost is in the higher complexity of the necessary computational geometry.

Thorough mathematical analysis is still lacking. For non-curved meshes sim-
ple estimates can be derived from the standard theory.
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