
Cholesky Factorization of Band Matrices Using

Multithreaded BLAS

Alfredo Remón1, Enrique S. Quintana-Ort́ı1, and Gregorio Quintana-Ort́ı1

Departamento de Ingenieŕıa y Ciencia de Computadores, Universidad Jaume I,
12.071–Castellón, Spain, {remon,quintana,gquintan}@icc.uji.es

Abstract. In this paper we analyze the efficacy of the LAPACK blocked
routine for the Cholesky factorization of symmetric positive definite band
matrices on Intel SMP platforms using two multithreaded implementa-
tions of BLAS. We also propose strategies that alleviate some of the
performance degradation that is observed, and which is basically due to
the use of multiple threads when dealing with problems of small scale.

1 Introduction

Exploiting the structure of the coefficient matrix for band linear systems yields
huge savings, both in number of computations and storage space. This is recog-
nized in LAPACK [1], which includes a blocked routine for the Cholesky factor-
ization of symmetric positive definite band (SPDB) matrices.

In this paper we perform an experimental evaluation of the LAPACK (double-
precision) routine dpbtrf on Intel XeonTM and Intel Itanium2TM SMP plat-
forms. Underlying this routine, we employ the implementations of BLAS in Goto
BLAS and MKL. This evaluation reveals some weaknesses and defines a path to
improve the LAPACK routine and the kernels in the BLAS implementations.

The paper is structured as follows. The blocked factorization routine in LA-
PACK is reviewed in Section 2. Performance results together with some conclud-
ing remarks are offered in Section 3.

2 LAPACK blocked routine for band Cholesky

factorization

Given a SPDB matrix A ∈ R
n×n, with bandwidth kd, the LAPACK routine

xpbtrf obtains a decomposition of this matrix into either A = UT U or A =
LLT , where the Cholesky factors U, L ∈ R

n×n are, respectively, upper and lower
triangular with the same bandwidth as A. We only consider hereafter the latter
decomposition, but the elaboration that follows is analogous for the upper tri-
angular case. Also, for brevity, we obviate the description of the packed storage
format employed in LAPACK for (symmetric) band matrices.

Consider the partitionings

A →

(

ATL ⋆

ABL ABR

)

and L →

(

LTL 0

LBL LBR

)

, (1)



2 A. Remón, E.S. Quintana-Ort́ı, G. Quintana-Ort́ı

where ATL, LTL are both square blocks of the same dimension. (The “⋆” symbol
in A denotes the symmetric quadrant (block) of the matrix and will not be
referenced.) From A = LLT , we obtain
(

ATL ⋆

ABL ABR

)

=

(

LTL 0

LBL LBR

) (

LTL 0

LBL LBR

)T

=

(

LTLLT

TL ⋆

LBLLT

TL LBLLT

BL + LBRLT

BR

)

,

showing that LTL is the Cholesky factor of ATL, LBL = ABLL−T

TL
, and LBR is

the Cholesky factor of ABR − LBLLT

BL
. The LAPACK routine corresponds to

what is usually known as a right-looking variant; that is, an algorithm where, at
a given iteration, ATL has been completely factorized and overwritten by LTL,
ABL has been updated with respect to LTL, and ABR has been overwritten as
ABR := ABR − LBLLT

BL
.

Assume for simplicity that the block size, nb, is an exact multiple of kd, and
consider now the 5 × 5 repartitioning

(

ATL ⋆

ABL ABR

)

→











A00 ⋆ ⋆

A10 A11 ⋆ ⋆

A20 A21 A22 ⋆ ⋆

A31 A32 A33 ⋆

A42 A43 A44











,

where ATL, A00 ∈ R
k×k, A11, A33 ∈ R

nb×nb , and A22 ∈ R
l×l, with l = kd − nb,

and an analogous partitioning for L. The computations that are performed in
the next iteration of routine xpbtrf are

1.1) A11 = L11L
T

11,

2.1) A21 := A21L
−T

11
, 2.2) A22 := A22 − L21L

T

21,

3.1) A31 := A31L
−T

11
, 3.2) A32 := A32 − L31L

T

21, 3.3) A33 := A33 − L31L
T

31.

(2)

Operation 1.1) is simply obtained as a (dense) Cholesky factorization of A11,
while 2.1) and 2.2) are computed, respectively, by invoking the BLAS-3 trian-
gular linear system solver (xtrsm) and the BLAS-3 symmetric rank-k kernel
(xsyrk). Given that with these repartitionings, A31 and L31 are both upper tri-
angular, the implementation of operations 3.1)–3.3) in xpbtrf is as follows. In
order to solve the triangular linear system in 3.1), a copy of A31 is first obtained
in an auxiliary workspace W of dimension nb × nb, initialized with zeros in the
subdiagonal entries, and then the BLAS-3 solver xtrsm yields W := WL−T

11 .
Next, 3.2) is computed as a matrix product using the BLAS-3 kernel xgemm as
A32 := A32 − WLT

21. Finally, the update in 3.3) is obtained using kernel xsyrk

as A33 := A33 − WWT , and the upper triangular part of W is written back to
A31. From this particular implementation we observe that:

– Provided nb ≪ kd, a major part of the floating-point arithmetic operations
(flops) are performed in 2.2) so that the performance of the LAPACK blocked
routine should be similar to that of xsyrk.

– No attempt is made to exploit the upper triangular structure of A31, L31

in the computations corresponding to 3.1)–3.3) as there is no appropriate
BLAS kernel. Furthermore, the additional space W and the extra copies are
only required in order to use BLAS-3 to perform these operations.



Cholesky factorization of band matrices using multithreaded BLAS 3

3 Experimental Results

All experiments were performed using ieee double-precision (real) arithmetic
and SPDB matrices of order n = 10000. In the evaluation of routine dpbtrf,
for each bandwidth dimension, we employed values from 1 to 200 to determine
the optimal block size, n

opt

b
, but only those results corresponding to n

opt

b
are

shown.
We report the performance of dpbtrf on two SMP architectures: the first

platform, xeon, consists of 2 Intel Xeon processors@2.4 GHz with 512 KB of
L2 cache; the second platform, itanium, is composed of 4 Intel Itanium-2 pro-
cessors@1.5 GHz with 256 KB/4 MB of L2/L3 cache; two threads were used
on xeon (2T) and four threads on itanium (4T). The BLAS implementation in
MKL 8.0 was used on both platforms; on xeon we also used Goto BLAS 1.00
while on itanium we used Goto BLAS 0.95mt.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

Bandwidth, kd

Pe
rc

en
ta

ge
 o

f t
im

e

Distribution of time for blocked routine DPBTRF+Goto BLAS on XEON (2 proc.)

A11 2T
A21 2T
A22 2T
A31 2T
A32 2T
A33 2T

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

Bandwidth, kd

Pe
rc

en
ta

ge
 o

f t
im

e
Distribution of time for blocked routine DPBTRF+Goto BLAS on ITANIUM (4 proc.)

A11 4T
A21 4T
A22 4T
A31 4T
A32 4T
A33 4T

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100

Bandwidth, kd

Pe
rc

en
ta

ge
 o

f t
im

e

Distribution of time for blocked routine DPBTRF+MKL on XEON (2 proc.)

A11 2T
A21 2T
A22 2T
A31 2T
A32 2T
A33 2T

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100

Bandwidth, kd

Pe
rc

en
ta

ge
 o

f t
im

e

Distribution of time for blocked routine DPBTRF+MKL on ITANIUM (4 proc.)

A11 4T
A21 4T
A22 4T
A31 4T
A32 4T
A33 4T

Fig. 1. Distribution of time among the different operations involved in routine dpbtrf

on xeon (left) and itanium (right) using multithreaded Goto BLAS (top) and MKL
(bottom).

Figure 1 reports the results from a detailed evaluation which shows how the
time is distributed among the different operations in dpbtrf: (factorization of)
A11, (update of) A21, etc. (see (2)) Two main observations can be drawn from
this experiment: The factorization of A11 is a major performance bottleneck for



4 A. Remón, E.S. Quintana-Ort́ı, G. Quintana-Ort́ı

the routine in case Goto BLAS is employed. A closer inspection revealed this to
be due to the low performance of the multithreaded implementation of dgemv,
invoked from dpotf2 during the factorization of A11, when the size of this block
(nb × nb) is small. A similar inspection concluded that MKL employs a single
thread in such situation and therefore avoids this bottleneck. A second source of
performance degradation is the update of A31, both for MKL and Goto BLAS.
Although in theory the time required to update this block should be negligible,
the experiments show that this is not the case, specially on xeon.

Figure 2 illustrates the MFLOPs (millions of flops per second) of the orig-
inal codes dpbtrf in the lines labeled as Goto and MKL. In order to overcome
the first problem, when using the Goto BLAS, we factorize A11 using routine
dpotf2 with the code in kernel dgemv directly inlined. This ensures that a sin-
gle thread is used during this operation and obtains an important performance
enhancement, as shown in Fig. 2 by the lines labeled as Goto + Inline.

The second strategy we propose consists in merging the update of A31 with
that of A21 and the update of A32 and A33 with that of A22. For that purpose,
we propose a minor modification of the storage scheme used in LAPACK so that
the kd × n packed matrix is passed to the routine with nb additional rows in
the bottom part of the matrix, initially set to zeros. This allows to combine the
operations of the routine so that only single invocations of dtrsm and dsyrk are
required per iteration to operate on the subdiagonal blocks of the band matrix.
The improvement that is obtained in the performance is illustrated by the lines
labeledd as Goto + Inline & MS and MKL + MS in Fig. 2.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1000

2000

3000

4000

5000

6000

Bandwidth, kd

M
FL

O
Ps

Performance of the blocked routine DPBTRF on XEON (2 proc.)

Goto (2T)
Goto (2T)+Inline
Goto (2T)+Inline & MS
MKL (2T)
MKL (2T)+MS

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Bandwidth, kd

M
FL

O
Ps

Performance of the blocked routine DPBTRF on ITANIUM (4 proc.)

Goto (4T)
Goto (4T)+Inline
Goto (4T)+Inline & MS
MKL (4T)
MKL (4T)+MS

Fig. 2. Performance of routine dpbtrf on xeon (left) and itanium (right) using mul-
tithreaded Goto BLAS and MKL.

References

1. E. Anderson, Z. Bai, J. Demmel, J. E. Dongarra, J. DuCroz, A. Greenbaum, S. Ham-
marling, A. E. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users’ Guide.
SIAM, Philadelphia, 1992.


