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Abstract. Matrices appearing in Hartree-Fock or density functional
theory become sparse when separation between atoms exceeds system-
dependent threshold value. The sparsity is block-wise where each block
corresponds to an atom or a group of atoms. The sparsity is maintained
by filtering out small elements below predetermined threshold. This fil-
tering has to be done in a systematic fashion to rigorously control the
error in the calculation. We describe a general method that provides
a strict error control in blocked sparse matrix algebra and present its
applications to matrix-matrix multiplication, the Trace Correcting Pu-
rification algorithm and the entire self-consistent field calculation.

1 Introduction

Large scale Hartree-Fock (HF) or density functional theory (DFT) in Kohn-
Sham (KS) formalism consist of two time consuming steps: evaluation of the
HF/KS matrix (F ) and search for the corresponding density matrix. The former
step involves evaluation of various kinds of integrals, out of which Coulomb,
exchange and exchange-correlation are the most time-consuming ones. In this
work, we focus on the latter one. The formation of the new density matrix is
traditionally performed via diagonalization of the HF/KS matrix and use of the
eigenvectors Cocc associated with the smallest eigenvalues to obtain the elements
of the density matrix D:

FCocc = εSCocc → D = Cocc(Cocc)T (1)

where S is the basis set overlap matrix. This operation scales cubically with the
problem size and becomes the bottleneck for large systems. A method that takes
advantage of the existing sparsity in the F matrix is needed. Several algorithms
have been proposed, all of which compute the solution by iterative matrix-matrix
multiplication. Their performance is therefore closely connected to the efficiency
of the multiplications. The multiplications can scale linearly if multiplications by
zeros which are present in sparse matrices are avoided. Care is needed to avoid
fill-in. The fill-in can be prevented by filtering out small elements. A systematic
filtering algorithm will control the error propagation and contain it under user-
requested threshold.
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2 Block Sparse matrices in KS method.

One feature that distinguishes matrices appearing in KS method is their rather
limited sparsity. It is not extremely uncommon that 5000x5000 matrices have
only 50% of elements below 10−8. While sparsity is larger in many cases, one has
to be able to handle semi-dense cases as well. We use for our work a multi-atom
blocked sparse representation [1]. This representation provides a good perfor-
mance by reordering the atoms and associated basis functions to move together
matrix elements associated with atoms close in space.

2.1 Systematic Small-Submatrix Selection Algorithm

There exist several ways to prevent the fill-in by dropping small elements. One
appealing way is to explicitly take advantage of the dependence of matrix element
magnitude on distance between corresponding basis function centers [1, 2]. A
submatrix is dropped when the shortest distance between the two atom groups
is greater than a predefined cutoff radius. This approach – in spite of its simplicity
and predictability – has some considerable deficiencies. It is rarely known which
cutoff radius will correspond to a certain drop tolerance and an assumption has
to be made about either the properties of the matrix or the molecule itself. In
case of a density matrix, an exponential decay dependence of the matrix element
on the distance can be used, with the exponent related to the band gap [3, 4]. The
gap in the calculation depends mostly on the physical property of the system
but also on chosen basis set or the Hamiltonian. Incorrect assumptions (eg.
inaccurate band gap estimation) will cause severe difficulties with error control.
In such a case, one can never be certain that all of the dropped submatrices
were under the requested threshold. Such scheme may also unnecessarily include
small blocks with a negligible contribution [5].

Another way to remove unnecessary elements is to look at the maximum ab-
solute element in the submatrix. The entire submatrix is dropped if this element
is smaller than a preselected threshold. One is able in this way to strictly con-
trol the error. Maximum absolute element in the matrix is one of many possible
choices of the norm. This norm however can be quite inefficient, i.e. it can result
in including elements contributing little to the overall result. The reason is that
one has to assume that all elements in the matrix are as large as the largest
element. A tighter norm that better estimates the magnitude of the submatrix
can substantially improve performance.

Our method which we call a Systematic Small-Submatrix Selection Algorithm
(SSSA) aims at improving the truncation efficiency by using an iterative process
that is closely related to the definition of the norm [6]. The condition for removing
submatrices is formulated in terms of entire rows if the infinity norm is used,
entire columns if the 1-norm is used and entire matrices if the Frobenius norm
is used. This contrasts with having a condition on each single submatrix. If,
for example, the 1-norm is used one should repeatedly remove the smallest (the
one with smallest norm) submatrix in the column as long as the sum of the
removed submatrices’ norms is smaller than the error limit ε. This process is
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repeated for each column in the matrix. However, if one is to search for the
smallest submatrix in each iteration this can be needlessly tedious. Therefore
it is desired to keep the columns ordered by the 1-norm of each submatrix.
The commonly used Compressed Sparse Column (CSC) representation does not
require the columns to be ordered after row position in the matrix. The matrix-
matrix multiplication implementation does not require the submatrices to be
ordered, either. For this reason, efficient truncation can be achieved by keeping
each column sorted in descending order after the 1-norm of each submatrix.
Then submatrices are removed from the end as long as the sum of their 1-norms
is smaller than ε. This approach is particularly efficient for large submatrices
since only the submatrix norms need to be sorted, i.e. one value per submatrix.
It can also be applied to other sparse matrix representations.

3 Applications

3.1 Accumulated Error in Trace Correcting Purification

Density matrix purification has been proposed in a multitude of variants [7–
11]. The purification algorithms rely on the fact that Fock and density matrices
share a common set of eigenvectors but have different eigenvalues. One therefore
applies a series of transforms to the Fock matrix so that the eigenvalues corre-
sponding to occupied eigenvectors converge to 1 and the remaining eigenvalues
converge to 0.

The simplest purification algorithm, developed by Niklasson, called trace-
correcting purification (TCP) [8], is not only the easiest one to implement but
also very competitive when it comes to performance measured in number of
matrix-matrix multiplications [8, 10]. The TCP algorithm assumes orthogonal
basis set, i.e. the overlap matrix S = I. Therefore, the generalized eigenvalue
problem in Eq. 1 has to be transformed to standard form. Once this has been
done, one proceeds as follows:

compute P = (lmax I-F)/(lmax-lmin)
while abs(trace(P)-N)>threshold

if(trace(P)>N) then
P := P*P

else
P := 2*P-P*P

end while

where lmax and lmin are upper boundary of the largest and lower boundary of
the lowest eigenvalues, respectively. The final result after n steps is contained
in Pn. TCP algorithm accumulates the truncation error over the iterations. It is
therefore crucial to use a systematic filtering in order to control the accumulation
error [6].
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Fig. 1. Left panel: Truncation error introduced by filtering algorithms: traditional
threshold-based filtering (alg.1) and SSSA (alg.2). Right panel: Error in the final SCF
energy as a function of selected SSSA threshold and the system size. For systems af-
fected by truncation errors, SSSA algorithm keeps their impact at a strictly controlled
level.

3.2 Impact of filtering on SCF energy

Choice of the filtering algorithm has fundamental impact on the outcome of the
calculation. An inadequate filtering algorithm may cause that multiplications by
negligibly small blocks are performed — which will damage the performance of
the algorithm. Figure 1 shows that SSSA provides exactly requested accuracy
of the calculation, while a simple-minded filtering based only on the block norm
may cause that more and more small blocks get included in the calculation,
making it more expensive than necessary.
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