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Overview

Hessenberg reduction is a similarity transformation:
QT A Q H

* * =

where Q is an orthogonal matrix stored in compact
WY representation.

Challenge
IThe computation is memory-bound, which
means the performance is limited by the memory
bandwidth rather than the computational power.

Solution requirements
INUMA-aware algorithm.
IHigh utilization of low-level cache memory.

Blocked Hessenberg reduction: partition the matrix
into column blocks and reduce the blocks one by one
from left to right.
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Figure : Partitioning of A after reducing k columns.

Blocked Hessenberg steps
begin
foreach block do

1. Reduce block (Level 2 BLAS) CRITICAL.
foreach column in the block do
1.1 Update column.
1.2 Construct reflector.
1.3 Apply reflector / reduce column.
1.4 Update compact WY representation.
end

2. Update compact WY representation (Level 3
BLAS).

3. Update rest of the matrix (Level 3 BLAS).
end

end
Level 2 BLAS: Matrix-Vector operations O(n2)
computations and memory access.
Level 3 BLAS: Matrix-Matrix operations O(n3)
computations and O(n2) memory access.

Parallel Cache Assignment (PCA)

Partition and store the matrix in local caches
IData reuse → reduce cache - memory comm.
IData locality → reduce cache - cache comm.
INUMA aware → reduce remote memory comm.
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Figure : Data partitioning for PCA

Partitioning scheme
IRow block for inner loop (step 1).
IColumn block for outer loop (steps 2 and 3).

Partitioning chosen to reduce synchronization
points and to increase data locality and data
reuse.

PCA used inside inner loop.
ICopy the submatrix to local buffer.
I Static assignment of data by dividing the
submatrix into one block row per core.

Parallel cache assignment fulfills both solution
requirements.

Experiments
IMatrix sizes N × N: N between 100 and 4000.
INumber of cores between 6 and 48.
ITest against LAPACK.
ITest against ScaLAPACK.

Key results
I Up to 2.2 times faster than w/o PCA
I Up to 8.4 times faster than LAPACK
I Up to 2.4 times faster than ScaLAPACK

Results
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Future work

Tuning potential

INumber of threads per iteration.
INumber of threads in inner loop.
INumber of threads in outer loop.
IThread distribution.
I Up to 50% improvement for some cases.

IPanel width per iteration.
IDifferent panel widths give different performance.

Goal is to design an auto-tuning mechanism to
find the best value for these parameters at
run-time.
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Impact of variable threads per iteration on the PCA performance
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Impact of variable panel width on parallel blocked Hessenberg with PCA
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