
NUMA-Aware Blocked Hessenberg Reduction
Using Parallel Cache Assignment
Mahmoud Eljammaly, Lars Karlsson and Bo Kågström
Department of Computing Science

Overview

Hessenberg reduction is a similarity transformation:
QT A Q H

* * =

where Q is an orthogonal matrix stored in compact
WY representation.

Challenge
IThe computation is memory-bound, which
means the performance is limited by the memory
bandwidth rather than the computational power.

Solution requirements
INUMA-aware algorithm.
IHigh utilization of low-level cache memory.

Blocked Hessenberg reduction: partition the matrix
into column blocks and reduce the blocks one by one
from left to right.

k

A11

A21

A12 A13

A22 A23

Figure : Partitioning of A after reducing k columns.

Blocked Hessenberg steps
begin
foreach block do

1. Reduce block (Level 2 BLAS) CRITICAL.
foreach column in the block do
1.1 Update column.
1.2 Construct reflector.
1.3 Apply reflector / reduce column.
1.4 Update compact WY representation.
end

2. Update compact WY representation (Level 3
BLAS).

3. Update rest of the matrix (Level 3 BLAS).
end

end
Level 2 BLAS: Matrix-Vector operations O(n2)
computations and memory access.
Level 3 BLAS: Matrix-Matrix operations O(n3)
computations and O(n2) memory access.

Parallel Cache Assignment (PCA)

Partition and store the matrix in local caches
IData reuse → reduce cache - memory comm.
IData locality → reduce cache - cache comm.
INUMA aware → reduce remote memory comm.

cache cache cache cache

A0
A1
A2
A3

core core core core
socket

A

Figure : Data partitioning for PCA

Partitioning scheme
IRow block for inner loop (step 1).
IColumn block for outer loop (steps 2 and 3).

Partitioning chosen to reduce synchronization
points and to increase data locality and data
reuse.

PCA used inside inner loop.
ICopy the submatrix to local buffer.
I Static assignment of data by dividing the
submatrix into one block row per core.

Parallel cache assignment fulfills both solution
requirements.

Experiments
IMatrix sizes N × N: N between 100 and 4000.
INumber of cores between 6 and 48.
ITest against LAPACK.
ITest against ScaLAPACK.

Key results
I Up to 2.2 times faster than w/o PCA
I Up to 8.4 times faster than LAPACK
I Up to 2.4 times faster than ScaLAPACK

Results

0 500 1000 1500 2000 2500 3000 3500 4000
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Matrix size

S
p

e
e
d

 u
p

Parallel blocked Hessenberg with PCA vs without PCA

 

 

6 cores

12 cores

18 cores

24 cores

30 cores

36 cores

42 cores

48 cores

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6

7

8

9

Matrix size

S
p

e
e
d

 u
p

Parallel blocked Hessenberg with PCA vs LAPACK

 

 

6 cores

12 cores

18 cores

24 cores

30 cores

36 cores

42 cores

48 cores

0 500 1000 1500 2000 2500 3000 3500 4000

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Matrix size

S
p

e
e
d

 u
p

Parallel blocked Hessenberg with PCA vs ScaLAPACK

 

 

6 cores

12 cores

18 cores

24 cores

30 cores

36 cores

42 cores

48 cores

Future work

Tuning potential

INumber of threads per iteration.
INumber of threads in inner loop.
INumber of threads in outer loop.
IThread distribution.
I Up to 50% improvement for some cases.

IPanel width per iteration.
IDifferent panel widths give different performance.

Goal is to design an auto-tuning mechanism to
find the best value for these parameters at
run-time.

0 500 1000 1500 2000 2500 3000 3500 4000
−20

−10

0

10

20

30

40

50

60

Matrix size

Im
p

ro
v

e
m

e
n

t 
(%

)

Impact of variable threads per iteration on the PCA performance

 

 

48 double dist

48 double

48 inner dist

48 inner

48 outer dist

48 outer

48 dist

48

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−2

0

2

4

6

8

10

12

Matrix size

Im
p

ro
v
e
m

e
n

t 
(%

) 
o

v
e
r 

fi
x
e
d

 b
lo

c
k
in

g
 s

iz
e
 =

 5
0

Impact of variable panel width on parallel blocked Hessenberg with PCA

 

 

6 cores

12 cores

18 cores

24 cores

30 cores

36 cores

40 cores

48 cores

External funding

Software developed and tested using the resources of HPC2N and UMIT Research Lab


