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Overview

Hessenberg reduction is a similarity transformation:
QT A  Q H

where Q is an orthogonal matrix stored in compact
WY representation.

Challenge

» T he computation is memory-bound, which
means the performance is limited by the memory
bandwidth rather than the computational power.

Solution requirements
» NUMA-aware algorithm.
» High utilization of low-level cache memory.

Parallel Cache Assighment (PCA)

Blocked Hessenberg reduction: partition the matrix
into column blocks and reduce the blocks one by one
from left to right.

Figure : Partitioning of A after reducing k columns.
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Blocked Hessenberg steps
begin

foreach block do

1. Reduce block (Level 2 BLAS) CRITICAL.

foreach column in the block do
1.1 Update column.

1.2 Construct reflector.

1.3 Apply reflector / reduce column.

1.4 Update compact WY representation.

end

2. Update compact WY representation (Level 3
BLAS).

3. Update rest of the matrix (Level 3 BLAS).
end
end

Level 2 BLAS: Matrix-Vector operations O(n?)
computations and memory access.

Level 3 BLAS: Matrix-Matrix operations O(n°)
computations and O(n?) memory access.

Partition and store the matrix in local caches
» Data reuse — reduce cache - memory comm.
» Data locality — reduce cache - cache comm.

» NUMA aware — reduce remote memory comm.
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Figure : Data partitioning for PCA

Results

Partitioning scheme
» Row block for inner loop (step 1).
» Column block for outer loop (steps 2 and 3).

Partitioning chosen to reduce synchronization
points and to increase data locality and data
reuse.

PCA used inside inner loop.
» Copy the submatrix to local buffer.

» Static assignment of data by dividing the
submatrix into one block row per core.

Parallel cache assignment fulfills both solution
requirements.

Experiments

» Matrix sizes N X N: N between 100 and 4000.
» Number of cores between 6 and 48.

» Test against LAPACK.

» Test against ScaLAPACK.

Key results

» Up to 2.2 times faster than w/o PCA
» Up to 8.4 times faster than LAPACK
» Up to 2.4 times faster than ScaLAPACK

Parallel blocked Hessenberg with PCA vs without PCA
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Future work

Parallel blocked Hessenberg with PCA vs LAPACK
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Parallel blocked Hessenberg with PCA vs ScaLAPACK
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Tuning potential

» Number of threads per iteration.
» Number of threads in inner loop.
» Number of threads in outer loop.
» Thread distribution.
» Up to 50% improvement for some cases.

» Panel width per iteration.
» Different panel widths give different performance.

Goal is to design an auto-tuning mechanism to
find the best value for these parameters at
run-time.

Software developed and tested using the resources of HPC2N and UMIT Research Lab

Impact of variable threads per iteration on the PCA performance
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Impact of variable panel width on parallel blocked Hessenberg with PCA
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